Structural, magnetic and electrochemical studies on Znx Mg1−x Fe2O4 nanoparticles prepared via solution combustion method
https://doi.org/10.17586/2220-8054-2024-15-2-233-239
Abstract
Zinc-manganese ferrite nanoparticles, denoted as ZnxMg1−xFe2O4 where x ranges from 0 to 1, were synthesized via solution combustion employing glycine as the organic fuel at a stoichiometric redox ratio. The resultant compositions underwent comprehensive characterization utilizing scanning electron microscopy, energy-dispersive spectroscopy, and powder X-ray diffractometry. Magnetic and electrochemical properties were meticulously examined using a vibrating magnetometer and cyclic voltmeter, respectively. Analysis revealed an average particle size ranging from 24.9 to 30.8 nm across all synthesized samples, with degrees of crystallinity reaching 93–96%. Notably, variations in the magnetic behavior were observed depending on the magnesium content within the samples. The highest magnetic parameters were recorded for Zn0.4Mg0.6Fe2O4 (Ms = 27.78 emu/g, Mr = 3.77 emu/g, and Hc = 21.4 Oe). Furthermore, the electrochemical capacity of the synthesized powders exhibited dependency on the incorporation of magnesium cations into the crystal lattice. These findings underscore the significance of magnesium content in modulating the magnetic and electrochemical properties of ZnxMg1−xFe2O4 nanoparticles synthesized via solution combustion.
About the Authors
K. D. MartinsonRussian Federation
Kirill D. Martinson.
Politekhnicheskaya st., 26, St. Petersburg, 194064
A. A. Murashkin
Russian Federation
Alexander A. Murashkin.
Professora Popova st., 5, St. Petersburg, 197022
A. A. Lobinsky
Russian Federation
Artem A. Lobinsky.
Politekhnicheskaya st., 26, St. Petersburg, 194064
D. D Maltsev
Russian Federation
Danil D. Maltsev.
Politekhnicheskaya st., 26, St. Petersburg, 194064
K. Qi
China
Kezhen Qi.
Dali 671000
J. Yu
China
Jiaguo Yu.
68 Jincheng St, Wuhan, 430078
O. V. Almjasheva
Russian Federation
Oksana V. Almjasheva.
Professora Popova st., 5, St. Petersburg, 197022
V. I. Popkov
Russian Federation
Vadim I. Popkov.
Politekhnicheskaya st., 26, St. Petersburg, 194064
References
1. Varshney D., Verma K., Kumar A. Structural and vibrational properties of ZnxMn1−xFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Materials Chemistry and Physics, 2011, 131, P. 413–419.
2. Martinson K.D., Ivanov A.A., Panteleev I.B., Popkov V.I., Effect of sintering temperature on the synthesis of LiZnMnFe microwave ceramics with controllable electro/magnetic properties. Ceramics International, 2021, 47(21), P. 30071–30081.
3. Dippong T., Levei E.A., Cadar O. Recent Advances in Synthesis and Applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomaterials, 2021, 11, P. 1560.
4. Salih S.J., Mahmood W.M. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon, 2023, 9(6), P. e16601.
5. Sahoo P., Choudhary P., Laha S.S., Dixit A., Mefford O.T. Recent advances in zinc ferrite (ZnFe2O4) based nanostructures for magnetic hyperthermia applications. Chemical Communications, 2023, 81(59), P. 12065–12090.
6. Sagayaraj R. A review on structural and magnetic properties of magnesium ferrite nanoparticles. International Nano Letters, 2022, 12, P. 345–350.
7. Nigam A., Saini S., Singh B., Rai A.K., Pawar S.J. Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity. Materials Today: Communications, 2022, 31, P. 103632.
8. Wu K., Li J., Zhang C. Zinc ferrite based gas sensors: A review. Ceramics International, 2019, 45(9), P. 11143–11157.
9. Mahmoodi N.M. Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation. Materials Research Bulletin, 2013, 48(10), P. 4255–4260.
10. Martinson K.D., Beliaeva A.D., Sakhno D.D., Beliaeva I.D., Belyak V.E., Nianikova G.G., Panteleev I.B., Naraev V.N., Popkov V.I. Synthesis, Structure, and Antimicrobial Performance of NixZn1−xFe2O4 (x = 0, 0.3, 0.7, 1.0) Magnetic Powders toward E. coli, B. cereus, S. citreus, and C. tropicalis. Water, 2022, 14(3), P. 454.
11. Haghniaz R., Rabbani A., Vajhadin F., Khan T., Kousar R., Khan A.R., Montazerian H., Iqbal J., Libanori A., Kim H.-J., Wahid F. Anti-bacterial and wound healing-promoting effects of zinc ferrite nanoparticles. Journal of Nanobiotechnology, 2021, 19, P. 38.
12. Major J.L., Parigi G., Luchinat C., Meade T.J. The synthesis and in vitro testing of a zinc-activated MRI contrast agent. PNAS, 2007, 104(35), P. 13881–13886.
13. Rahman M.A., Islam M.T., Singh M.S.J., Samsuzzaman M., Chowdhury M.E.H. Synthesis and characterization of Mg–Zn ferrite based flexible microwave composites and its application as SNG metamaterial. Scientific Reports, 2021, 11, P. 7654.
14. Mishra B., Munisha B., Nanda J., Sankaran K.J., Suman S. Hydrothermally Synthesized Magnesium doped Zinc Ferrite Nanoparticles: An extensive study on structural, optical, magnetic, and dielectric properties. Materials Chemistry and Physics, 2022, 292, P. 126791.
15. Choudhury H.A., Choudhary A., Sivakumar M., Moholkar V.S., Mechanistic investigation of the sonochemical synthesis of zinc ferrite. Ultrasonics Sonochemistry, 2013, 20(1), P. 294–302.
16. Martinson K.D., Cherepkova I.A., Sokolov V.V. Formation of cobalt ferrite nanoparticles during the burning of glycine-nitrate and their magnetic properties. Glass Physics and Chemistry, 2018, 44(1), P. 21–25.
17. Bid S., Pradhan S.K. Preparation of Zinc Ferrite by High-Energy Ball-Milling and Microstructure Characterization by Rietveld’s Analysis. Materials Chemistry and Physics, 2003, 82(1), P. 27–37.
18. Iqbal F., Mutalib M.I.A., Shaharun M.S., Khan M., Abdullah B. Synthesis of ZnFe2O4 Using sol-gel Method: Effect of Different Calcination Parameters. Procedia Engineering, 2016, 148, P. 787–794.
19. Riyanti F., Purwaningrum, W., Yuliasari N., Putri S., Apriani, N., Hariani P.L. The effect of fuel on the physiochemical properties of ZnFe2O4 synthesized by solution combustion method. Turkish Journal of Chemistry, 2022, 46(6), P. 1875–1882.
20. Senthamilselvan T., Nithiyanantham S., Kogulakrishnan K., Mahalakshmi S., Lakshmigandhan T., Mohan R., Gunasekaran B, Structural, magnetic, electric and electrochemical studies on zinc doped magnesium ferrite nano particles – Sol-gel method. Heliyon, 2024, 10(3), P. E25511.
21. Manikandan A., Vijaya J.J., Sundararajan M., Meganathan C., Kennedy L.J., Bououdina M. Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices and Microstructures, 2013, 64, P. 118–131.
22. Heidari P., Masoudpanah S.M. Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: the effect of fuel type. Journal of Materials Research and Technology, 2020, 9(3), P. 4469–475.
23. Dyachenko S.V., Martinson K.D., Cherepkova I.A., Zhernovoi A.I. Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type, produced by glycine-nitrate combustion. Russian Journal of Applied Chemistry, 2016, 89(4), P. 535–539.
24. Dalt S.D., Takimi A.S., Volkmer T.M., Sousa V.C., Bergmann C.P. Magnetic and Mössbauer behavior of the nanostructured MgFe2O4 spinel obtained at low temperature. Powder Technology, 2011, 210(2), P. 103–108.
Review
For citations:
Martinson K.D., Murashkin A.A., Lobinsky A.A., Maltsev D.D., Qi K., Yu J., Almjasheva O.V., Popkov V.I. Structural, magnetic and electrochemical studies on Znx Mg1−x Fe2O4 nanoparticles prepared via solution combustion method. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):233-239. https://doi.org/10.17586/2220-8054-2024-15-2-233-239