Errors of in-phase and quadrature demodulation method created by low-pass filter
https://doi.org/10.17586/2220-8054-2024-15-3-325-331
Abstract
This article explores phase errors created by low-pass filter in interferometric signals which are processed by In-Phase and quadrature demodulation algorithm (IQ-demodulation). These errors were calculated using the analytical method and were compared with mathematical modeling, which uses pre-calculated parameters: phase, sampling period, infinitesimal parameters. In this paper, we show that phase errors calculated with analytical method clearly correlate with mathematical modeling errors. This work made it possible to calculate corrections to the demodulated phase, which, in turn, made it possible to refine the phase calculation step in IQ demodulation algorithm using the arctangent function. The resulting formulas describing the correction to the demodulated phase will increase the accuracy of the quadrature method, which is used to process signals from interferometric devices of various types, such as: reflectometers, geophysical seismic systems,
interferometric radiometry, etc.
About the Authors
G. P. MiroshnichenkoITMO University
Russian Federation
George P. Miroshnichenko
Research Center of light guide photonics
197101; Kronverksky pr. 49; St. Petersburg
A. N. Arzhanenkova
ITMO University
Russian Federation
Alina N. Arzhanenkova
Research Center of light guide photonics
197101; Kronverksky pr. 49; St. Petersburg
M. Yu. Plotnikov
ITMO University
Russian Federation
Michail Yu. Plotnikov
Research Center of light guide photonics
197101; Kronverksky pr. 49; St. Petersburg
References
1. Li Y., et al. Phase Demodulation Methods for Optical Fiber Vibration Sensing System : A Review. IEEE Sensors J., 2022, 22 (3), P. 1842–1866.
2. Guojie Tu, Benli Yu, Mengmeng Zhao, Jiping Lin. A phase-sensitive optical time-domain reflectometry system with an electrical I/Q demodulator. Proceedings of the SPIE 10821, Advanced Sensor Systems and Applications VIII, 2018, 1082123.
3. Hartog A., Frignet B., Mackie D., Clark M. Vertical seismic optical profiling on wireline logging cable. Geophysical Prospecting, 2014, 62, P. 693–701.
4. He X., et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR. Optics Letters, 2017, 42, P. 442–445.
5. Yu M., Liu M., Chang T., Lang J., Chen J., Cui H.-L. Phase-sensitive optical time-domain reflectometric system based on a single-source dual heterodyne detection scheme. Applied Optics, 2017, 56, P. 4058–4064.
6. Lu Y., Zhu T., Chen L., Bao X. Distributed vibration sensor based on coherent detection of phase-OTDR. J. of Lightwave Technology, 2010, 28 (22), P. 3243–3249.
7. Pan Z., Liang K., Ye Q., Cai H., Qu R., Fang Z. Phase-sensitive OTDR system based on digital coherent detection. Optical Sensors and Biophotonics, Proceedings of the SPIE 8311 (Optical Society of America), 2011, 83110S.
8. Yuelan Lu, Tao Zhu, Liang Chen, Xiaoyi Bao. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR. J. of Lightwave Technology, 2010, 28 (22), 3243.
9. Yongkang Dong, Xi Chen, Erhu Liu, Cheng Fu, Hongying Zhang, Zhiwei Lu. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain Reflectometer. Applied Optics, 2016, 55 (28), P. 7810–7815.
10. Qin M., He X., Liu F., Zheng X., Zhang M. Real-time phase demodulation and data administration of distributed optical fiber vibration sensing system. Proceedings of the SPIE, 2017, 10208, P. 1020810–1020818.
11. Zinan Wang, Li Zhang, Song Wang, Naitian Xue, Fei Peng, Mengqiu Fan, Wei Sun, Xianyang Qian, Jiarui Rao, Yunjiang Rao. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Optics Express, 2016, 24 (2), P. 853–858.
12. Martins H.F., Shi K., Thomsen B.C., Martin-Lopez S., Gonzalez-Herraez M., Savory S.J. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data. Optics Express, 2016, 24 (19), P. 22303–22318.
13. Yan Q., Tian M., Li X., Yang Q., Xu Y. Coherent Φ-OTDR based on polarization-diversity integrated coherent receiver and heterodyne detection. Proceedings of the SPIE, 2017, 10323, P. 1032383–1032386.
14. Fang G., Xu T., Li F. Heterodyne interrogation system for TDM interferometric fiber optic sensors array. Optics Communications, 2015, 341, P. 74–78.
15. Song M., Yin S., Ruffin P.B. Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach–Zehnder interferometer. Applied Optics, 2000, 39 (7), P. 1106–1111.
16. Fu Y., Xue N., Wang Z., Zhang B., Xiong J., Rao Y. Impact of I/Q amplitude imbalance on coherent – OTDR. J. of Lightwave Technology, 2018, 36 (4), P. 1069–1075.
17. Faruk M.S., Kikuchi K. Compensation for In-Phase/Quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation. IEEE Photonics J., 2013, 5 (2), 7800110.
18. Chang S.H., Chung H.S., Kim K. Impact of quadrature imbalance in optical coherent QPSK receiver. IEEE Photonics Technology Letters, 2009, 21 (11), P. 709–711.
19. Naitian Xue, Yun Fu, Chongyu Lu, Ji Xiong, Le Yang, Zinan Wang. Characterization and Compensation of Phase Offset in Φ-OTDR with Heterodyne Detection. J. of Lightwave Technology, 2018, 36 (23), P. 5481–5487.
20. Miroshnichenko G.P., Arzhanenkova A.N., Plotnikov M.Y. Errors in the demodulation algorithm with a generated carrier phase introduced by the low-pass filter. Scientific and Technical J. of Information Technologies, Mechanics and Optics, 2023, 23 (4), P. 795–802 (in Russian).
21. Miroshnichenko G.P., Arzhanenkova A.N., Plotnikov M.Y. Investigation of the method of current thermal modulation of the wavelength VCSEL. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13 (6), P. 615–620.
Review
For citations:
Miroshnichenko G.P., Arzhanenkova A.N., Plotnikov M.Yu. Errors of in-phase and quadrature demodulation method created by low-pass filter. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):325-331. https://doi.org/10.17586/2220-8054-2024-15-3-325-331