Stability and transformations of domain walls in cylindrical wires
https://doi.org/10.17586/2220-8054-2024-15-3-332-339
Abstract
For magnetic wires and other systems with cylindrical symmetry, algorithms have been proposed for constructing a multidimensional energy surface, searching for minimal energy paths between locally stable states and the activation energies of transitions between such states. The mechanisms of nucleation and transformation of domain walls of various types in amorphous ferromagnetic nanowires with a nonuniform anisotropy distribution have been studied. The stability of the domain walls structure with respect to thermal fluctuations and random external perturbations has been assessed.
Keywords
About the Authors
K. A. ChichayITMO University
Russian Federation
Ksenia A. Chichay
Department of Physics
197101; St. Petersburg
I. S. Lobanov
ITMO University
Russian Federation
Igor S. Lobanov
Department of Physics
197101; St. Petersburg
V. M. Uzdin
ITMO University
Russian Federation
Valery M. Uzdin
Department of Physics
197101; St. Petersburg
References
1. Foerster M., Boulle O., Esefelder S., Mattheis R., Kl¨aui M. Domain Wall Memory Device. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht, 2016
2. Parkin S.S.P., Hayashi M. and Thomas L. Magnetic Domain-Wall Racetrack Memory. Science, 2008, 320(5873), P. 190–194.
3. Venkat G., Allwood D.A., Hayward T.J. Magnetic domain walls: types, processes and applications. J. Phys. D: Appl. Phys., 2024, 57, P. 1688.
4. Parkin S., Yang S.H. Memory on the racetrack. Nature nanotechnology, 2015, 10(3), P. 195–198.
5. Blasing R. et al. Magnetic Racetrack Memory: From Physics to the Cusp of Applications Within a Decade. Proc. IEEE 2020, 108, P. 1303–1321.
6. Hertel R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J. Phys.: Condens. Matter, 2016. 28, P. 483002.
7. Yan M., Andreas C., Kakay A., Garcıa-Sanchez F., Hertel R. Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett., 2011. 99, P. 122505.
8. Corte-Le´on P., Gonzalez-Legarreta L., Zhukova V., Ipatov M., Blanco J.M., Churyukanova M., Taskaev S. and Zhukov A. Controlling the domain wall dynamics in Fe-, Ni- and Co- based magnetic microwires. J. Alloys Compound., 2020. 834, P. 155170.
9. Tejo F., Fernandez-Roldan J.A.F., Guslienko K., Otxoa R.M. and Chubykalo-Fesenko O. Giant supermagnonic Bloch point velocities in cylindrical ferromagnetic nanowires. Nanoscale, 2024, Advance Article
10. Alam J., et.al. Cylindrical micro and nanowires: Fabrication, properties and applications. J. Magn. Magn. Mater., 2020, 513, P. 167074.
11. Yan M. Beating the Walker limit with massless domain walls in cylindrical nanowires. Phys. Rev. Lett., 2010. 104, P. 057201.
12. Zhukova V., Corte-Leon P., Gonz´alez-Legarreta, L., Talaat, A., Blanco, J.M., Ipatov, M., Olivera, J. and Zhukov, A. Review of domain wall dynamics engineering in magnetic microwires. Nanomaterials, 2020. 10(12), P. 2407.
13. Chiriac H., Ovari T., Zhukov A. Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater., 2003. 496, P. 254–255.
14. Zhukova V., Blanco J.M., Ipatov M., Zhukov A. Magnetoelastic contribution in domain wall dynamics of amorphous microwires. Physica B, 2012, 407, P. 1450–1454.
15. Chichay K., et. al.Tunable domain wall dynamics in amorphous ferromagnetic microwires. J. Alloys Compound., 2020. 835, P. 154843.
16. Gudoshnikov S.A., Grebenshchikov Yu.B., Ljubimov B.Ya., Palvanov P.S., Usov N.A., Ipatov M., Zhukov A., Gonzalez J. Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Stat. Sol. A, 2009, 206(4), P. 613–617.
17. Chichay K.A., Lobanov I.S. Uzdin V.M. The structure of magnetic domain walls in cylindrical nano- and microwires with in- homogeneous anisotropy. Nanosystems: Phys. Chem. Math., 2023. 15, P. 55–59.
18. Lobanov I.S., Potkina M.N., Uzdin V.M. Stability and Lifetimes of Magnetic States of Nano- and Microstructures (Brief Review). JETP Letters, 2021. 113, 12, P. 801–813.
19. Lobanov I.S., Uzdin V.M. The lifetime of micron scale topological chiral magnetic states with atomic resolution. Comp. Phys. Commun., 2021, 269, P. 108136.
20. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garsia-Sanchez F., B. Van Waeyenberge F. The design and verification of MuMax3. AIP Advances, 2014, 4, P. 107133.
21. Fischbacher T., Franchin M., Bordignon G., and Fangohr H. A Systematic Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag, IEEE Transactions on Magnetics, 2007, 43(6), P. 2896–2898.
22. Abert C., Exl L., Bruckner F., Drews A., Suess D. magnum. fe: A micromagnetic finite-element simulation code based on FEniCS. Journal of Magnetism and Magnetic Materials, 2013, 345, P. 29–35.
23. Chiriac H., Ovari T.A., Pop Gh. Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B., 1995, 52(14), P. 10104.
Review
For citations:
Chichay K.A., Lobanov I.S., Uzdin V.M. Stability and transformations of domain walls in cylindrical wires. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):332-339. https://doi.org/10.17586/2220-8054-2024-15-3-332-339