Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and characterization of InGaZn2O5 obtained by nitrate-tartrate complex decomposition method

https://doi.org/10.17586/2220-8054-2025-16-1-44-50

Abstract

The study for the first time presents a method for producing indium-gallium-zinc oxide InGaZn2O5 using the nitrate-tartrate complex decomposition method. The material is characterized by X-ray diffraction, electron microscopy, IR- and UV-spectroscopy. It has been established that the use of tartaric acid as a precursor already at a temperature of 500 C leads to the formation of a single-phase homogeneous material consisting of nanocrystalline particles in the form of micrometer agglomerates. The proposed method for producing nanoparticles can be used in the future to produce semiconductor inks based on IGZO. KEYWORDS indium-gallium-zinc oxide, InGaZn2O5, IGZO, nanoparticles.

About the Authors

G. M. Boleiko
Moscow Institute of Physics and Technology Institutsky lane
Russian Federation

Gelena M. Boleiko

9, Dolgoprudny, 141701



G. M. Zirnik
Moscow Institute of Physics and Technology Institutsky lane
Russian Federation

Gleb M. Zirnik

9, Dolgoprudny, 141701



A. I. Kovalev
Moscow Institute of Physics and Technology Institutsky lane; South Ural State University
Russian Federation

Andrey I. Kovalev

9, Dolgoprudny, 141701

Lenin Av., 76, Chelyabinsk, 454080



D. A. Uchaev
South Ural State University
Russian Federation

Daniil A. Uchaev

Lenin Av., 76, Chelyabinsk, 454080



I. A. Solizoda
Moscow Institute of Physics and Technology Institutsky lane; St. Petersburg State University Universitetskaya embankment; Tajik National University
Russian Federation

Ibrohimi A. Solizoda

9, Dolgoprudny, 141701

Universitetskaya embankment, 7-9, 199034, St. Petersburg

Rudaki Av., 17, Dushanbe, 734025



A. S. Chernukha
Moscow Institute of Physics and Technology; South Ural State University
Russian Federation

Alexander S. Chernukha

Institutsky lane, 9, Dolgoprudny, 141701

Lenin Av., 76, Chelyabinsk, 454080



S. A. Gudkova
Moscow Institute of Physics and Technology; St. Petersburg State University
Russian Federation

Svetlana A. Gudkova

Institutsky lane, 9, Dolgoprudny, 141701

Universitetskaya embankment, 7-9, 199034, St. Petersburg



D. A. Vinnik
Moscow Institute of Physics and Technology; South Ural State University; St. Petersburg State University
Russian Federation

Denis A. Vinnik

Institutsky lane, 9, Dolgoprudny, 141701

Lenin Av., 76, Chelyabinsk, 454080

Universitetskaya embankment, 7-9, 199034, St. Petersburg



References

1. Zhang Z., Zou R., Yu L., Hu J. Recent research on one-dimensional silicon-based semiconductor nanomaterials: Synthesis, structures, properties and applications. Crit. Rev. Solid State Mater. Sci., 2011, 36(3), P. 148–173.

2. Balaghi L., Shan S., Fotev I., Moebus F., Rana R., Venanzi T., H¨ubner R., Mikolajick T., Schneider H., Helm M., Pashkin A., Dimakis E. High electron mobility in strained GaAs nanowires. Nat. Commun., 2021, 12, P. 6642.

3. Khan M.A.H., Rao M.V. Gallium Nitride (GaN) Nanostructures and their gas sensing properties: A review. Sensors., 2020, 20(14), P. 3889.

4. Potts H., Morgan N.P., Tutuncuoglu G., Friedl M., Morral A.F.i. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets. Nanotechnology., 2017, 28(5), P. 054001.

5. Li X., Zhu H. Two-dimensional MoS2: Properties, preparation, and applications. J. Materiomics., 2015, 1(1), P. 33–44.

6. Patoary N.H., Xie J., Zhou G., Mamun F.Al., Sayyad M., Tongay S., Esqueda I.S. Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling. Sci. Rep., 2023, 13, P. 3304.

7. Yu Z., Perera I.R., Daeneke T., Makuta S., Tachibana Y., Jasieniak J.J., Mishra A., B¨auerle P., Spiccia L., Bach U. Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater., 2016, 8(8), P. e305–e305.

8. Cheng C.-H., Tsay C.-Y., Flexible a-IZO thin film transistors fabricated by solution processes. J. Alloys Compd., 2010, 507(1), P. L1–L3.

9. Bastola A., He Y., Im J., Rivers G., Wang F., Worsley R., Austin J.S., Nelson-Dummett O., Wildman R.D., Hague R., Tuck C.J., Turyanska L. Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Mater. Today Electron., 2023, 6, P. 100058.

10. Kac¸ar R., Serin R.B., Uc¸ar E., U¨ lku¨ A. A review of high-end display technologies focusing on inkjet printedmanufacturing.Mater. Today Commun., 2023, 35, P. 105534.

11. Bhatti G., Agrawal Y., Palaparthy V., Kavicharan M., Agrawal M. Chapter 13 - Flexible Electronics: A Critical Review. In: Agrawal Y., Mummaneni K., Sathyakam P.U., editors. Interconnect Technologies for Integrated Circuits and Flexible Electronics. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. 2024, P. 221–248.

12. Bi S., Gao B., Han X., He Z.R., Metts J., Jiang C.M., Asare-Yeboah K. Recent progress in printing flexible electronics: A review. Sci. China Technol. Sci., 2024, 67(8), P. 2363–2386.

13. Samanta S., Han K., Sun C., Wang C., Thean A.V.-Y., Gong X. Amorphous IGZO TFTs Featuring Extremely-Scaled Channel Thickness and 38 nm Channel Length: Achieving Record High Gm,max of 125 S/m at VDS of 1 V and ION of 350 A/m. In Proc. IEEE Symp. VLSI Technol., 2020, P. 1–2.

14. Yin X., Ji X., Liu W., Li X., Wang M., Xin Q., Zhang J., Yan Z., Song A. Electrolyte-gated amorphous IGZO transistors with extended gates for prostate-specific antigen detection. Lab. Chip., 2024, 24, P. 3284–3293.

15. Sheng J., Hong T., Lee H.-M., Kim K., Sasase M., Kim J., Hosono H., Park J.-S. Amorphous IGZO TFT with High Mobility of 70 cm2/(V s) via Vertical Dimension Control Using PEALD. ACS Appl. Mater. Interfaces., 2019, 11(43), P. 40300–40309.

16. Han Y., Lee D.H., Cho E.-S., Kwon S.J., Yoo H. Argon and Oxygen Gas Flow Rate Dependency of Sputtering-Based Indium-Gallium-Zinc Oxide Thin-Film Transistors. Micromachines, 2023, 14(7), P. 1394.

17. Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016), P. 488–492.

18. Wager J.F., Yeh B., Hoffman R.L., Keszler D.A. An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci., 2014, 18(2), P. 53–61.

19. Chiang H.Q., Wager J.F., Hoffman R.L., Jeong J., Keszler D.A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett., 2004, 86(1), P. 13503.

20. Venkateshvaran D., Nikolka M., Sadhanala A., Lemaur V., Zelazny M., Kepa M., Hurhangee M., Kronemeijer A.J., Pecunia V., Nasrallah I., Romanov I., Broch K., McCulloch I., Emin D., Olivier Y., Cornil J., Beljonne D., Sirringhaus H. Approaching disorder-free transport in highmobility conjugated polymers. Nature, 2014, 515(7527), P. 384–388.

21. Fukuda K., Takeda Y., Yoshimura Y., Shiwaku R., Tran L.T., Sekine T., Mizukami M., Kumaki D., Tokito S. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun., 2014, 5(1), P. 4147.

22. Giri G., DeLongchamp D.M., Reinspach J., Fischer D.A., Richter L.J., Xu J., Benight S., Ayzner A., He M., Fang L., Xue G., Toney M.F., Bao Z. Effect of solution shearing method on packing and disorder of organic semiconductor polymers. Chem. Mater., 2015, 27(7), P. 2350–2359.

23. Yan H., Chen Z., Zheng Y., Newman C., Quinn J.R., D¨otz F., Kastler M., Facchetti A. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457(7230), P. 679–686.

24. Takeda Y., Yoshimura Y., Shiwaku R., Hayasaka K., Sekine T., Okamoto T., Matsui H., Kumaki D., Katayama Y., Tokito S. Organic complementary inverter circuits fabricated with reverse offset printing. Adv. Electron. Mater., 2018, 4(1), P. 1700313.

25. Shiwaku R., Takeda Y., Fukuda T., Fukuda K., Matsui H., Kumaki D., Tokito S. Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend, Sci. Rep., 2016, 6(1), P. 34723.

26. Minemawari H., Yamada T., Matsui H., Tsutsumi J., Haas S., Chiba R., Kumai R., Hasegawa T. Inkjet printing of single-crystal films. Nature, 2011, 475(7356), P. 364–367.

27. Zhang W., Smith J., Watkins S.E., Gysel R., McGehee M., Salleo A., Kirkpatrick J., Ashraf S., Anthopoulos T., Heeney M., McCulloch I. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc., 2010, 132(33), P. 11437–11439.

28. Zeng H., Rice P.M.,Wang S.X., Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc., 2004, 126(37), P. 11458–11459.

29. Sun S., Zeng H., Robinson D.B Raoux S., Rice P.M., Wang S.X., Li G. Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc., 2004, 126(1), P. 273–279.

30. Vinnik, D.A., Kovalev, A.I., Sherstyuk, D., Zhivulin, D.E., Zirnik, G.M., Batmanova T. Development of a scalable method for synthesizing a promising oxide material for electronics In-Ga-Zn-O, RusMetal, 2024.

31. Yoon S., Kim S.J., Tak Y.J., Kim H.J. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique. Sci. Rep., 2017, 7(1), P. 43216.

32. Sanctis S., Hoffmann R.C., Koslowski N., Foro S., Bruns M., Schneider J.J. Aqueous Solution Processing of Combustible Precursor Compounds into Amorphous Indium Gallium Zinc Oxide (IGZO) Semiconductors for Thin Film Transistor Applications. Chem. Asian J., 2018, 13(24), P. 3912–3919.

33. Xie Y., Wang D., Fong H.H. High-Performance Solution-Processed Amorphous InGaZnO Thin Film Transistors with a Metal–Organic Decomposition Method. J. Nanomater., 2018, 2018, P. 7423469.

34. Chen Y., Wang B., HuangW., Zhang X., Wang G., Leonardi M.J., Huang Y., Lu Z., Marks T.J., Facchetti A. Nitroacetylacetone as a Cofuel for the Combustion Synthesis of High-Performance Indium–Gallium–Zinc Oxide Transistors. Chem. Mater., 2018, 30(10), P. 3323–3329.

35. Wang B., Yu X., Guo P., Huang W., Zeng L., Zhou N., Chi L., Bedzyk M.J., Chang R.P.H., Marks T.J., Facchetti A. Solution-Processed All-Oxide Transparent High-Performance Transistors Fabricated by Spray-Combustion Synthesis. Adv. Electron. Mater., 2016, 2(4), P. 1500427.

36. Kim M.-G., Kanatzidis M.G., Facchetti A., Marks T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater., 2011, 10(5), P. 382–388.

37. Hennek J.W., Kim M.-G.,, Kanatzidis M.G., Facchetti A., Marks T.J. Exploratory Combustion Synthesis: Amorphous Indium Yttrium Oxide for Thin-Film Transistors. J. Am. Chem. Soc., 2012, 134(23), P. 9593–9596.

38. Wang B., Zeng L., Huang W., Melkonyan F.S., Sheets W.C., Chi L., Bedzyk M.J., Marks T.J., Facchetti A. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors. J. Am. Chem. Soc., 2016, 138(22), P. 7067–7074.

39. Wang B., Huang W., Bedzyk M.J., Dravid V.P., Hu Y.Y., Marks T.J., Facchetti A. Combustion Synthesis and Polymer Doping of Metal Oxides for High-Performance Electronic Circuitry. Acc. Chem. Res., 2022, 55(3), P. 429–441.

40. Fukuda N., Watanabe Y., Uemura S., Yoshida Y., Nakamura T., Ushijima H. In–Ga–Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a coprecipitation-based method. J. Mater. Chem. C., 2014, 2(13), P. 2448–2454.

41. Wu M.-C., Hsiao K.-C., Lu H.-C. Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method. Mater. Chem. Phys., 2015, 162, P. 386–391.

42. Zirnik G.M., Chernukha A.S., Uchaev D.A., Solizoda I.A., Gudkova S.A., Nekorysnova N.S., Vinnik D.A. Phase formation of nanosized InGaZnO4 obtained by the sol-gel method with different chelating agents. Nanosyst. Physics, Chem. Math., 2024, 15(4), P. 520–529.

43. Zirnik G.M., Sozykin S.A., Uchaev D.A., Chernukha A.S., Solizoda I.A., Gudkova S.A., Vinnik D.A. Preparation and synthesis of polycrystalline InGaZnO4 via tartaric acid mediated sol-gel method. Russ. Metall, 2024.

44. Zirnik G.M., Sozykin S.A., Chernukha A.S., Solizoda I.A., Gudkova S.A., Vinnik D.A. Indium gallium zinc oxide: Effect of complexing agent on structure. Journal of Structural Chemistry, 65(2024), P. 133998.

45. Tien T.-C.,Wu J.-S., Hsieh T.-E.,Wu H.-J. The Fabrication of Indium–Gallium–Zinc Oxide Sputtering Targets with Various Gallium Contents and Their Applications to Top-Gate Thin-Film Transistors. Coatings., 2022, 12(8), P. 1217.

46. Kimizuka N., Mohri T., Matsui Y., Siratori K. Homologous compounds, InFeO3(ZnO)m (m=1–9). J. Solid State Chem., 1988, 74(1), P. 98–109.

47. Pr´eaud S., Byl C., Brisset F., Berardan D. SPS-assisted synthesis of InGaO3(ZnO) ceramics, and influence of m on the band gap and the thermal conductivity. J. Am. Ceram. Soc., 2020, 103(5), P. 3030–3038.


Review

For citations:


Boleiko G.M., Zirnik G.M., Kovalev A.I., Uchaev D.A., Solizoda I.A., Chernukha A.S., Gudkova S.A., Vinnik D.A. Synthesis and characterization of InGaZn2O5 obtained by nitrate-tartrate complex decomposition method. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):44-50. https://doi.org/10.17586/2220-8054-2025-16-1-44-50

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)