Синтез и характеризация InGaZn2O5 полученного методом разложения нитратно-тартратного комплекса
https://doi.org/10.17586/2220-8054-2025-16-1-44-50
Аннотация
В работе впервые представлен способ получения оксида индия-галлия-цинка методом разложения нитратно-тартратного комплекса. Материал охарактеризован методами рентгеновской дифракции, электронной микроскопии, ИК- и УФ-спектроскопии. Установлено, что использование в качестве прекурсора винной кислоты уже при температуре 500 °С приводит к образованию однофазного однородного материала, состоящего из нанокристаллических частиц в виде микрометровых агломератов. Предложенный способ получения наночастиц может быть в дальнейшем использован для получения полупроводниковых чернил на основе IGZO.
Об авторах
Г. М. БолейкоРоссия
Г. М. Зирник
Россия
А. И. Ковалёв
Россия
Д. А. Учаев
Россия
И. А. Солизода
Россия
А. С. Чернуха
Россия
С. А. Гудкова
Россия
Д. А. Винник
Россия
Список литературы
1. Zhang Z., Zou R., Yu L., Hu J. Recent research on one-dimensional silicon-based semiconductor nanomaterials: Synthesis, structures, properties and applications. Crit. Rev. Solid State Mater. Sci., 2011, 36(3), P. 148–173.
2. Balaghi L., Shan S., Fotev I., Moebus F., Rana R., Venanzi T., H¨ubner R., Mikolajick T., Schneider H., Helm M., Pashkin A., Dimakis E. High electron mobility in strained GaAs nanowires. Nat. Commun., 2021, 12, P. 6642.
3. Khan M.A.H., Rao M.V. Gallium Nitride (GaN) Nanostructures and their gas sensing properties: A review. Sensors., 2020, 20(14), P. 3889.
4. Potts H., Morgan N.P., Tutuncuoglu G., Friedl M., Morral A.F.i. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets. Nanotechnology., 2017, 28(5), P. 054001.
5. Li X., Zhu H. Two-dimensional MoS2: Properties, preparation, and applications. J. Materiomics., 2015, 1(1), P. 33–44.
6. Patoary N.H., Xie J., Zhou G., Mamun F.Al., Sayyad M., Tongay S., Esqueda I.S. Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling. Sci. Rep., 2023, 13, P. 3304.
7. Yu Z., Perera I.R., Daeneke T., Makuta S., Tachibana Y., Jasieniak J.J., Mishra A., B¨auerle P., Spiccia L., Bach U. Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater., 2016, 8(8), P. e305–e305.
8. Cheng C.-H., Tsay C.-Y., Flexible a-IZO thin film transistors fabricated by solution processes. J. Alloys Compd., 2010, 507(1), P. L1–L3.
9. Bastola A., He Y., Im J., Rivers G., Wang F., Worsley R., Austin J.S., Nelson-Dummett O., Wildman R.D., Hague R., Tuck C.J., Turyanska L. Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Mater. Today Electron., 2023, 6, P. 100058.
10. Kac¸ar R., Serin R.B., Uc¸ar E., U¨ lku¨ A. A review of high-end display technologies focusing on inkjet printedmanufacturing.Mater. Today Commun., 2023, 35, P. 105534.
11. Bhatti G., Agrawal Y., Palaparthy V., Kavicharan M., Agrawal M. Chapter 13 - Flexible Electronics: A Critical Review. In: Agrawal Y., Mummaneni K., Sathyakam P.U., editors. Interconnect Technologies for Integrated Circuits and Flexible Electronics. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore. 2024, P. 221–248.
12. Bi S., Gao B., Han X., He Z.R., Metts J., Jiang C.M., Asare-Yeboah K. Recent progress in printing flexible electronics: A review. Sci. China Technol. Sci., 2024, 67(8), P. 2363–2386.
13. Samanta S., Han K., Sun C., Wang C., Thean A.V.-Y., Gong X. Amorphous IGZO TFTs Featuring Extremely-Scaled Channel Thickness and 38 nm Channel Length: Achieving Record High Gm,max of 125 S/m at VDS of 1 V and ION of 350 A/m. In Proc. IEEE Symp. VLSI Technol., 2020, P. 1–2.
14. Yin X., Ji X., Liu W., Li X., Wang M., Xin Q., Zhang J., Yan Z., Song A. Electrolyte-gated amorphous IGZO transistors with extended gates for prostate-specific antigen detection. Lab. Chip., 2024, 24, P. 3284–3293.
15. Sheng J., Hong T., Lee H.-M., Kim K., Sasase M., Kim J., Hosono H., Park J.-S. Amorphous IGZO TFT with High Mobility of 70 cm2/(V s) via Vertical Dimension Control Using PEALD. ACS Appl. Mater. Interfaces., 2019, 11(43), P. 40300–40309.
16. Han Y., Lee D.H., Cho E.-S., Kwon S.J., Yoo H. Argon and Oxygen Gas Flow Rate Dependency of Sputtering-Based Indium-Gallium-Zinc Oxide Thin-Film Transistors. Micromachines, 2023, 14(7), P. 1394.
17. Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016), P. 488–492.
18. Wager J.F., Yeh B., Hoffman R.L., Keszler D.A. An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci., 2014, 18(2), P. 53–61.
19. Chiang H.Q., Wager J.F., Hoffman R.L., Jeong J., Keszler D.A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett., 2004, 86(1), P. 13503.
20. Venkateshvaran D., Nikolka M., Sadhanala A., Lemaur V., Zelazny M., Kepa M., Hurhangee M., Kronemeijer A.J., Pecunia V., Nasrallah I., Romanov I., Broch K., McCulloch I., Emin D., Olivier Y., Cornil J., Beljonne D., Sirringhaus H. Approaching disorder-free transport in highmobility conjugated polymers. Nature, 2014, 515(7527), P. 384–388.
21. Fukuda K., Takeda Y., Yoshimura Y., Shiwaku R., Tran L.T., Sekine T., Mizukami M., Kumaki D., Tokito S. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun., 2014, 5(1), P. 4147.
22. Giri G., DeLongchamp D.M., Reinspach J., Fischer D.A., Richter L.J., Xu J., Benight S., Ayzner A., He M., Fang L., Xue G., Toney M.F., Bao Z. Effect of solution shearing method on packing and disorder of organic semiconductor polymers. Chem. Mater., 2015, 27(7), P. 2350–2359.
23. Yan H., Chen Z., Zheng Y., Newman C., Quinn J.R., D¨otz F., Kastler M., Facchetti A. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457(7230), P. 679–686.
24. Takeda Y., Yoshimura Y., Shiwaku R., Hayasaka K., Sekine T., Okamoto T., Matsui H., Kumaki D., Katayama Y., Tokito S. Organic complementary inverter circuits fabricated with reverse offset printing. Adv. Electron. Mater., 2018, 4(1), P. 1700313.
25. Shiwaku R., Takeda Y., Fukuda T., Fukuda K., Matsui H., Kumaki D., Tokito S. Printed 2 V-operating organic inverter arrays employing a small-molecule/polymer blend, Sci. Rep., 2016, 6(1), P. 34723.
26. Minemawari H., Yamada T., Matsui H., Tsutsumi J., Haas S., Chiba R., Kumai R., Hasegawa T. Inkjet printing of single-crystal films. Nature, 2011, 475(7356), P. 364–367.
27. Zhang W., Smith J., Watkins S.E., Gysel R., McGehee M., Salleo A., Kirkpatrick J., Ashraf S., Anthopoulos T., Heeney M., McCulloch I. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc., 2010, 132(33), P. 11437–11439.
28. Zeng H., Rice P.M.,Wang S.X., Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc., 2004, 126(37), P. 11458–11459.
29. Sun S., Zeng H., Robinson D.B Raoux S., Rice P.M., Wang S.X., Li G. Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc., 2004, 126(1), P. 273–279.
30. Vinnik, D.A., Kovalev, A.I., Sherstyuk, D., Zhivulin, D.E., Zirnik, G.M., Batmanova T. Development of a scalable method for synthesizing a promising oxide material for electronics In-Ga-Zn-O, RusMetal, 2024.
31. Yoon S., Kim S.J., Tak Y.J., Kim H.J. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique. Sci. Rep., 2017, 7(1), P. 43216.
32. Sanctis S., Hoffmann R.C., Koslowski N., Foro S., Bruns M., Schneider J.J. Aqueous Solution Processing of Combustible Precursor Compounds into Amorphous Indium Gallium Zinc Oxide (IGZO) Semiconductors for Thin Film Transistor Applications. Chem. Asian J., 2018, 13(24), P. 3912–3919.
33. Xie Y., Wang D., Fong H.H. High-Performance Solution-Processed Amorphous InGaZnO Thin Film Transistors with a Metal–Organic Decomposition Method. J. Nanomater., 2018, 2018, P. 7423469.
34. Chen Y., Wang B., HuangW., Zhang X., Wang G., Leonardi M.J., Huang Y., Lu Z., Marks T.J., Facchetti A. Nitroacetylacetone as a Cofuel for the Combustion Synthesis of High-Performance Indium–Gallium–Zinc Oxide Transistors. Chem. Mater., 2018, 30(10), P. 3323–3329.
35. Wang B., Yu X., Guo P., Huang W., Zeng L., Zhou N., Chi L., Bedzyk M.J., Chang R.P.H., Marks T.J., Facchetti A. Solution-Processed All-Oxide Transparent High-Performance Transistors Fabricated by Spray-Combustion Synthesis. Adv. Electron. Mater., 2016, 2(4), P. 1500427.
36. Kim M.-G., Kanatzidis M.G., Facchetti A., Marks T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater., 2011, 10(5), P. 382–388.
37. Hennek J.W., Kim M.-G.,, Kanatzidis M.G., Facchetti A., Marks T.J. Exploratory Combustion Synthesis: Amorphous Indium Yttrium Oxide for Thin-Film Transistors. J. Am. Chem. Soc., 2012, 134(23), P. 9593–9596.
38. Wang B., Zeng L., Huang W., Melkonyan F.S., Sheets W.C., Chi L., Bedzyk M.J., Marks T.J., Facchetti A. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors. J. Am. Chem. Soc., 2016, 138(22), P. 7067–7074.
39. Wang B., Huang W., Bedzyk M.J., Dravid V.P., Hu Y.Y., Marks T.J., Facchetti A. Combustion Synthesis and Polymer Doping of Metal Oxides for High-Performance Electronic Circuitry. Acc. Chem. Res., 2022, 55(3), P. 429–441.
40. Fukuda N., Watanabe Y., Uemura S., Yoshida Y., Nakamura T., Ushijima H. In–Ga–Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a coprecipitation-based method. J. Mater. Chem. C., 2014, 2(13), P. 2448–2454.
41. Wu M.-C., Hsiao K.-C., Lu H.-C. Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method. Mater. Chem. Phys., 2015, 162, P. 386–391.
42. Zirnik G.M., Chernukha A.S., Uchaev D.A., Solizoda I.A., Gudkova S.A., Nekorysnova N.S., Vinnik D.A. Phase formation of nanosized InGaZnO4 obtained by the sol-gel method with different chelating agents. Nanosyst. Physics, Chem. Math., 2024, 15(4), P. 520–529.
43. Zirnik G.M., Sozykin S.A., Uchaev D.A., Chernukha A.S., Solizoda I.A., Gudkova S.A., Vinnik D.A. Preparation and synthesis of polycrystalline InGaZnO4 via tartaric acid mediated sol-gel method. Russ. Metall, 2024.
44. Zirnik G.M., Sozykin S.A., Chernukha A.S., Solizoda I.A., Gudkova S.A., Vinnik D.A. Indium gallium zinc oxide: Effect of complexing agent on structure. Journal of Structural Chemistry, 65(2024), P. 133998.
45. Tien T.-C.,Wu J.-S., Hsieh T.-E.,Wu H.-J. The Fabrication of Indium–Gallium–Zinc Oxide Sputtering Targets with Various Gallium Contents and Their Applications to Top-Gate Thin-Film Transistors. Coatings., 2022, 12(8), P. 1217.
46. Kimizuka N., Mohri T., Matsui Y., Siratori K. Homologous compounds, InFeO3(ZnO)m (m=1–9). J. Solid State Chem., 1988, 74(1), P. 98–109.
47. Pr´eaud S., Byl C., Brisset F., Berardan D. SPS-assisted synthesis of InGaO3(ZnO) ceramics, and influence of m on the band gap and the thermal conductivity. J. Am. Ceram. Soc., 2020, 103(5), P. 3030–3038.
Рецензия
Для цитирования:
Болейко Г.М., Зирник Г.М., Ковалёв А.И., Учаев Д.А., Солизода И.А., Чернуха А.С., Гудкова С.А., Винник Д.А. Синтез и характеризация InGaZn2O5 полученного методом разложения нитратно-тартратного комплекса. Наносистемы: физика, химия, математика. 2025;16(1):44-50. https://doi.org/10.17586/2220-8054-2025-16-1-44-50
For citation:
Boleiko G.M., Zirnik G.M., Kovalev A.I., Uchaev D.A., Solizoda I.A., Chernukha A.S., Gudkova S.A., Vinnik D.A. Synthesis and characterization of InGaZn2O5 obtained by nitrate-tartrate complex decomposition method. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):44-50. https://doi.org/10.17586/2220-8054-2025-16-1-44-50