Cellular uptake of FITC-labeled Ce0/8Gd0/2O2-x nanoparticles in 2D and 3D mesenchymal stem cell systems
https://doi.org/10.17586/2220-8054-2024-15-3-352-360
Abstract
Cerium-containing nanoparticles have recently been identified as promising nanozymes for advanced biomedical applications. Additional modification of the core or the surface of CeO2 nanoparticles (CeO2 NPs) provides them with new functionalities, making them a unique theranostic agent. In this study, dextran-stabilized CeO2 NPs doped with Gd (Ce0.8Gd0.2O2−x) were synthesized and further functionalized with fluorescein isothiocyanate (FITC). The synthesized nanoparticles have a high degree of biocompatibility at concentrations up to 5 mg/mL and are readily internalized by human mesenchymal stem cells cultured both in monolayers (2D system) and cellular spheroids (3D system). The functionalization of CeO2 NPs with Gd and FITC dye allows for monitoring their accumulation within organs and tissues using both magnetic resonance imaging (MRI) and fluorescence spectroscopy techniques.
About the Authors
D. D. KolmanovichInstitute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation
Danil D. Kolmanovich
Pushchino
N. N. Chukavin
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Scientific and Educational Center, State University of Education
Russian Federation
Nikita N. Chukavin
Pushchino; Moscow
N. A. Pivovarov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation
Nikita A. Pivovarov
Pushchino; Moscow
S. A. Khaustov
Scientific and Educational Center, State University of Education
Russian Federation
Sergey A. Khaustov
Moscow
V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation
Vladimir K. Ivanov
Moscow
A. L. Popov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences; Scientific and Educational Center, State University of Education
Russian Federation
Anton L. Popov
Pushchino; Moscow
References
1. Feng N., Liu Y., Dai X., Wang Y., Guo Q., Li Q. Advanced Applications of Cerium Oxide Based Nanozymes in Cancer. RSC Adv., 2022, 12, P. 121486–1493.
2. Saifi M.A., Seal S., Godugu C. Nanoceria, the Versatile Nanoparticles: Promising Biomedical Applications. J. Controlled Release, 2021, 338, P. 164–189.
3. Tang J.L.Y., Moonshi S.S., Ta H.T. Nanoceria: An Innovative Strategy for Cancer Treatment. Cell. Mol. Life Sci., 2023, 80, 46.
4. Xue Y., Yang F., Wu L., Xia D., Liu Y. CeO<sub>2</sub> Nanoparticles to Promote Wound Healing : A Systematic Review. Adv. Healthc. Mater., 2024, 13 (6), 2302858.
5. Shcherbakov A.B., Ivanov V.K., Zholobak N.M., Ivanova O.S., Krysanov E.Yu., Baranchikov A.E., Spivak N.Ya., Tretyakov Yu.D. Nanocrystalline Ceria Based Materials—Perspectives for Biomedical Application. Biophysics, 2011, 56, P. 987–1004.
6. Hirst S.M., Karakoti A.S., Tyler R.D., Sriranganathan N., Seal S., Reilly C.M. Anti-Inflammatory Properties of Cerium Oxide Nanoparticles. Small Weinh. Bergstr. Ger., 2009, 5, P. 2848–2856.
7. Heckert E., Karakoti A., Seal S., Self W.T. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials, 2008, 29, P. 2705–2709.
8. Baldim V., Bedioui F., Mignet N., Margaill I., Berret J.-F. The Enzyme-like Catalytic Activity of Cerium Oxide Nanoparticles and Its Dependency on Ce<sup>3+</sup> Surface Area Concentration. Nanoscale, 2018, 10, P. 6971–6980.
9. Pirmohamed T., Dowding J.M., Singh S., Wasserman B., Heckert E., Karakoti A.S., King J.E.S., Seal S., Self W.T. Nanoceria Exhibit Redox State-Dependent Catalase Mimetic Activity. Chem. Commun. Camb. Engl., 2010, 46, P. 2736–2738.
10. Dhall A., Burns A., Dowding J., Das S., Seal S., Self W. Characterizing the Phosphatase Mimetic Activity of Cerium Oxide Nanoparticles and Distinguishing Its Active Site from That for Catalase Mimetic Activity Using Anionic Inhibitors. Environ. Sci. Nano, 2017, 4, P. 1742–1749.
11. Hu H., Kang X., Shan Z., Yang X., Bing W., Wu L., Ge H., Ji H. A DNase-Mimetic Artificial Enzyme for the Eradication of Drug-Resistant Bacterial Biofilm Infections. Nanoscale, 2022, 14, P. 2676–2685.
12. Sozarukova M.M., Proskurnina E.V., Popov A.L., Kalinkin A.L., Ivanov V.K. New Facets of Nanozyme Activity of Ceria: Lipo- and Phospholipoperoxidase-like Behaviour of CeO<sub>2</sub> Nanoparticles. RSC Adv., 2021, 11, P. 35351–35360.
13. Wang G., Zhang J., He X., Zhang Z., Zhao Y. Ceria Nanoparticles as Enzyme Mimetics. Chin. J. Chem., 2017, 35, P. 791–800.
14. Wang Z., Shen X., Gao X., Zhao Y. Simultaneous Enzyme Mimicking and Chemical Reduction Mechanisms for Nanoceria as a Bio-Antioxidant: A Catalytic Model Bridging Computations and Experiments for Nanozymes. Nanoscale, 2019, 11, P. 13289–13299.
15. Sozarukova M.M., Chilikina P.A., Novikov D.O., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. Cerium Dioxide Nanoparticles Modulate the Oxidative Metabolism of Neutrophils upon Blood Irradiation with a Pulsed Broadband UV Source. Nanosyst. Phys. Chem. Math., 2023, 14, P. 644–651.
16. Ivanov V.K., Polezhaeva O.S., Tret’yakov Yu.D. Nanocrystalline Ceria: Synthesis, Structure-Sensitive Properties, and Promising Applications. Russ. J. Gen. Chem., 2010, 80, P. 604–617.
17. Naganuma T., Traversa E. Stability of the Ce<sup>3+</sup> Valence State in Cerium Oxide Nanoparticle Layers. Nanoscale, 2012, 4, P. 4950–4953.
18. Naganuma T., Traversa E. The Effect of Cerium Valence States at Cerium Oxide Nanoparticle Surfaces on Cell Proliferation. Biomaterials, 2014, 35, P. 4441–4453.
19. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., Ivanov V.K. Cerium Dioxide Nanoparticles as Third-Generation Enzymes (Nanozymes). Nanosyst. Phys. Chem. Math., 2017, P. 760–781.
20. Gao R., Mitra R.N., Zheng M., Wang K., Dahringer J.C., Han Z. Developing Nanoceria-Based pH-Dependent Cancer-Directed Drug Delivery System for Retinoblastoma. Adv. Funct. Mater., 2018, 28, 1806248.
21. Xu C., Lin Y., Wang J., Wu L., Wei W., Ren J., Qu X. Nanoceria-Triggered Synergetic Drug Release Based on CeO<sub>2</sub>-Capped Mesoporous Silica Host–Guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO<sub>2</sub>. Adv. Healthc. Mater., 2013, 2, P. 1591–1599.
22. Zholobak N.M., Ivanov V.K., Shcherbakov A.B. Chapter 12 -0 Interaction of Nanoceria with Microorganisms. In Nanobiomaterials in Antimicrobial Therapy, Grumezescu A.M., Ed., William Andrew Publishing, 2016, P. 419–450.
23. Singh S., Ly A., Das S., Sakthivel T.S., Barkam S., Seal S. Cerium Oxide Nanoparticles at the Nano-Bio Interface: Size-Dependent Cellular Uptake. Artif. Cells Nanomedicine Biotechnol., 2018, 46, P. 956–963.
24. Lim S., Kim W., Song S., Shim M.K., Yoon H.Y., Kim B.-S., Kwon I.C., Kim K. Intracellular Uptake Mechanism of Bioorthogonally Conjugated Nanoparticles on Metabolically Engineered Mesenchymal Stem Cells. Bioconjug. Chem., 2021, 32, P. 199–214.
25. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium Oxide Nanoparticles Stimulate Proliferation of Primary Mouse Embryonic Fibroblasts in Vitro. Mater. Sci. Eng. C, 2016, 68, P. 406–413.
26. Mahapatra C., Singh R.K., Lee J.-H., Jung J., Hyun J.K., Kim H.-W. Nano-Shape Varied Cerium Oxide Nanomaterials Rescue Human Dental Stem Cells from Oxidative Insult through Intracellular or Extracellular Actions. Acta Biomater., 2017, 50, P. 142–153.
27. Popov A.L., Savintseva I.V., Kozlova T.O., Ivanova O.S., Zhukov I.V., Baranchikov A.E., Yurkovskaya A.V., Savelov A.A., Ermakov A.M., Popova N.R., et al. Heavily Gd-Doped Non-Toxic Cerium Oxide Nanoparticles for MRI Labelling of Stem Cells. Molecules, 2023, 28, 1165.
28. Popov A.L., Ermakov A.M., Savintseva I.V., Selezneva I.I., Poltavtseva R.A., Zaraisky E.I., Poltavtsev A.M., Stepanov A.A., Ivanov V.K., Sukhikh G.T. Citrate-stabilized nanoparticles of CeO<sub>2</sub> stimulate proliferation of human mesenchymal stem cells IN VITRO. Nanosci. Technol. Int. J., 2016, 7.
29. Nilawar S., Chatterjee K. Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization. Biomacromolecules, 2022, 23, P. 226–239.
30. Rather H.A., Thakore R., Singh R., Jhala D., Singh S., Vasita R. Antioxidative Study of Cerium Oxide Nanoparticle Functionalised PCL-Gelatin Electrospun Fibers for Wound Healing Application. Bioact. Mater., 2018, 3, P. 201–211.
31. Ren X., Zhuang H., Zhang Y., Zhou P. Cerium Oxide Nanoparticles-Carrying Human Umbilical Cord Mesenchymal Stem Cells Counteract Oxidative Damage and Facilitate Tendon Regeneration. J. Nanobiotechnology, 2023, 21, 359.
32. D’Atri D., Zerrillo L., Garcia J., Oieni J., Lupu-Haber Y., Schomann T., Chan A., Cruz L.J., Creemers L.B., Machluf M. Nanoghosts: Mesenchymal Stem Cells Derived Nanoparticles as a Unique Approach for Cartilage Regeneration. J. Controlled Release, 2021, 337, P. 472–481.
33. Li X., Wei Z., Zhang W., Lv H., Li J., Wu L., Zhang H., Yang B., Zhu M., Jiang J. Anti-Inflammatory Effects of Magnetically Targeted Mesenchymal Stem Cells on Laser-Induced Skin Injuries in Rats. Int. J. Nanomedicine, 2020, 15, P. 5645–5659.
34. Gao Z., Zhang L., Hu J., Sun Y. Mesenchymal Stem Cells: A Potential Targeted-Delivery Vehicle for Anti-Cancer Drug, Loaded Nanoparticles. Nanomedicine Nanotechnol. Biol. Med., 2013, 9, P. 174–184.
35. Roger M., Clavreul A., Venier-Julienne M.-C., Passirani C., Sindji L., Schiller P., Montero-Menei C., Menei P. Mesenchymal Stem Cells as Cellular Vehicles for Delivery of Nanoparticles to Brain Tumors. Biomaterials, 2010, 31, P. 8393–8401.
36. Amiri F., Jahanian-Najafabadi A., Roudkenar M.H. In Vitro Augmentation of Mesenchymal Stem Cells Viability in Stressful Microenvironments. Cell Stress Chaperones, 2015, 20, P. 237–251.
37. Białkowska K., Komorowski P., Bryszewska M., Miłowska K. Spheroids as a Type of Three-Dimensional Cell Cultures—Examples of Methods of Preparation and the Most Important Application. Int. J. Mol. Sci., 2020, 21, 6225.
38. Zanoni M., Piccinini F., Arienti C., Zamagni A., Santi S., Polico R., Bevilacqua A., Tesei A. 3D Tumor Spheroid Models for in Vitro Therapeutic Screening: A Systematic Approach to Enhance the Biological Relevance of Data Obtained. Sci. Rep., 2016, 6, 19103.
39. Kim W., Gwon Y., Park S., Kim H., Kim J. Therapeutic Strategies of Three-Dimensional Stem Cell Spheroids and Organoids for Tissue Repair and Regeneration. Bioact. Mater., 2023, 19, P. 50–74.
40. Wang W., Itaka K., Ohba S., Nishiyama N., Chung U., Yamasaki Y., Kataoka K. 3D Spheroid Culture System on Micropatterned Substrates for Improved Differentiation Efficiency of Multipotent Mesenchymal Stem Cells. Biomaterials, 2009, 30, P. 2705–2715.
41. Tchoryk A., Taresco V., Argent R.H., Ashford M., Gellert P.R., Stolnik S., Grabowska A., Garnett M.C. Penetration and Uptake of Nanoparticles in 3D Tumor Spheroids. Bioconjug. Chem., 2019, 30, P. 1371–1384.
42. Roy S.M., Garg V., Barman S., Ghosh C., Maity A.R., Ghosh S.K. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front. Bioeng. Biotechnol., 2021, 9.
43. Zhuang J., Zhang J., Wu M., Zhang Y. A Dynamic 3D Tumor Spheroid Chip Enables More Accurate Nanomedicine Uptake Evaluation. Adv. Sci., 2019, 6, 1901462.
44. Sokolova V., Ebel J.-F., Kollenda S., Klein K., Kruse B., Veltkamp C., Lange C.M., Westendorf A.M., Epple M. Uptake of Functional Ultrasmall Gold Nanoparticles in 3D Gut Cell Models. Small, 2022, 18, 2201167.
45. Bayaraa O., Dashnyam K., Singh R.K., Mandakhbayar N., Lee J.H., Park J.-T., Lee J.-H., Kim H.-W. Nanoceria-GO-Intercalated Multicellular Spheroids Revascularize and Salvage Critical Ischemic Limbs through Anti-Apoptotic and pro-Angiogenic Functions. Biomaterials, 2023, 292, 121914.
46. Liu D., Lu G., Shi B., Ni H., Wang J., Qiu Y., Yang L., Zhu Z., Yi X., Du X., et al. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration. Adv. Healthc. Mater., 2023, 12, 2300123.
47. Liu D.-D., Zhang J.-C., Zhang Q., Wang S.-X., Yang M.-S. TGF-β/BMP Signaling Pathway Is Involved in Cerium-Promoted Osteogenic Differentiation of Mesenchymal Stem Cells. J. Cell. Biochem., 2013, 114, P. 1105–1114.
48. Yin P., Liang W., Han B., Yang Y., Sun D., Qu X., Hai Y., Luo D. Hydrogel and Nanomedicine-Based Multimodal Therapeutic Strategies for Spinal Cord Injury. Small Methods, 2024, 8, 2301173.
49. McDonagh P.R., Sundaresan G., Yang L., Sun M., Mikkelsen R., Zweit J. Biodistribution and PET Imaging of 89-Zirconium Labeled Cerium Oxide Nanoparticles Synthesized with Several Surface Coatings. Nanomedicine Nanotechnol. Biol. Med., 2018, 14, P. 1429–1440.
50. Zhang M., Zhai X., Ma T., Huang Y., Yan C., Du Y. Multifunctional Cerium Doped Carbon Dots Nanoplatform and Its Applications for Wound Healing. Chem. Eng. J., 2021, 423, 130301.
51. Shcherbakov A.B., Zholobak N.M., Ivanov V.K., Ivanova O.S., Marchevsky A.V., Baranchikov A.E., Spivak N.Ya., Tretyakov Yu.D. Synthesis and Antioxidant Activity of Biocompatible Maltodextrin-Stabilized Aqueous Sols of Nanocrystalline Ceria. Russ. J. Inorg. Chem., 2012, 57, P. 1411–1418.
52. Popov A.L., Abakumov M.A., Savintseva I.V., Ermakov A.M., Popova N.R., Ivanova O.S., Kolmanovich D.D., Baranchikov A.E., Ivanov V.K. Biocompatible Dextran-Coated Gadolinium-Doped Cerium Oxide Nanoparticles as MRI Contrast Agents with High T1 Relaxivity and Selective Cytotoxicity to Cancer Cells. J. Mater. Chem. B, 2021, 9, P. 6586–6599.
53. Dolgopolova E.A., Ivanova O.S., Ivanov V.K., Sharikov F.Yu., Baranchikov A.E., Shcherbakov A.B., Trietyakov Yu.D. Microwave-Hydrothermal Synthesis of Gadolinium-Doped Nanocrystalline Ceria in the Presence of Hexamethylenetetramine. Russ. J. Inorg. Chem., 2012, 57, P. 1303–1307.
54. Aalapati S., Ganapathy S., Manapuram S., Anumolu G., Prakya B.M. Toxicity and Bio-Accumulation of Inhaled Cerium Oxide Nanoparticles in CD1 Mice. Nanotoxicology, 2014, 8, P. 786–798.
55. Hirst S.M., Karakoti A., Singh S., Self W., Tyler R., Seal S., Reilly C.M. Bio-Distribution and in Vivo Antioxidant Effects of Cerium Oxide Nanoparticles in Mice. Environ. Toxicol., 2013, 28, P. 107–118.
56. Nosrati H., Heydari M., Khodaei M. Cerium Oxide Nanoparticles: Synthesis Methods and Applications in Wound Healing. Mater. Today Bio, 2023, 23, 100823.
57. Akhtar M.J., Ahamed M., Alhadlaq H., Alrokayan S. Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Curr. Drug Metab., 2019, 20, P. 907–917.
58. Rogosnitzky M., Branch S. Gadolinium-Based Contrast Agent Toxicity : A Review of Known and Proposed Mechanisms. BioMetals, 2016, 29, P. 365–376.
59. Takanezawa Y., Nakamura R., Kusaka T., Ohshiro Y., Uraguchi S., Kiyono M. Significant Contribution of Autophagy in Mitigating Cytotoxicity of Gadolinium Ions. Biochem. Biophys. Res. Commun., 2020, 526, P. 206–212.
60. Friebe B., Godenschweger F., Fatahi M., Speck O., Roggenbuck D., Reinhold D., Reddig A. The Potential Toxic Impact of Different Gadolinium-Based Contrast Agents Combined with 7-T MRI on Isolated Human Lymphocytes. Eur. Radiol. Exp., 2018, 2, 40.
61. Lord M.S., Jung M., Teoh W.Y., Gunawan C., Vassie J.A., Amal R., Whitelock J.M. Cellular Uptake and Reactive Oxygen Species Modulation of Cerium Oxide Nanoparticles in Human Monocyte Cell Line U937. Biomaterials, 2012, 33, P. 7915–7924.
62. Ting S.R.S., Whitelock J.M., Tomic R., Gunawan C., Teoh W.Y., Amal R., Lord M.S. Cellular Uptake and Activity of Heparin Functionalised Cerium Oxide Nanoparticles in Monocytes. Biomaterials, 2013, 34, P. 4377–4386.
63. Asati A., Santra S., Kaittanis C., Perez J.M. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano, 2010, 4, P. 5321–5331.
64. Zamyatina E.A., Kottsov S.Yu., Anikina V.A., Popov A.L., Shevelyova M.P., Popova N.R. Cerium Oxide@silica Core-Shell Nanocomposite as Multimodal Platforms for Drug Release and Synergistic Anticancer Effects. Nanosyst. Phys. Chem. Math., 2023, 14, P. 560–570.
65. Johnson K.K., Koshy P., Kopecky C., Devadason M., Biazik J., Zheng X., Jiang Y., Wang X., Liu Y., Holst J., et al. ROS-Mediated Anticancer Effects of EGFR-Targeted Nanoceria. J. Biomed. Mater. Res. A, 2024, 112, P. 754–769.
66. Zhou X., Wang B., Chen Y., Mao Z., Gao C. Uptake of Cerium Oxide Nanoparticles and Their Influences on Functions of A549 Cells. J. Nanosci. Nanotechnol., 2013, 13, P. 204–215.
67. Mazzolini J., Weber R.J.M., Chen H.-S., Khan A., Guggenheim E., Shaw R.K., Chipman J.K., Viant M.R., Rappoport J.Z. Protein Corona Modulates Uptake and Toxicity of Nanoceria via Clathrin-Mediated Endocytosis. Biol. Bull., 2016, 231, P. 40–60.
68. Butterfield A.D., Wang B., Wu P., Hardas S.S., Unrine J.M., Grulke E.A., Cai J., Klein J.B., Pierce W.M., Yokel R.A., et al. Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by Which Nanoceria May Exert Its Beneficial and Deleterious Effects In Vivo. J. Nanomedicine Nanotechnol., 2020, 11, 546.
69. Ryu N.-E., Lee S.-H., Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells, 2019, 8, 1620.
70. Browning A.P., Sharp J.A., Murphy R.J., Gunasingh G., Lawson B., Burrage K., Haass N.K., Simpson M. Quantitative Analysis of Tumour Spheroid Structure. eLife, 2021, 10, e73020.
71. Pinto B., Henriques A.C., Silva P.M.A., Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics, 2020, 12, 1186.
Review
For citations:
Kolmanovich D.D., Chukavin N.N., Pivovarov N.A., Khaustov S.A., Ivanov V.K., Popov A.L. Cellular uptake of FITC-labeled Ce0/8Gd0/2O2-x nanoparticles in 2D and 3D mesenchymal stem cell systems. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):352-360. https://doi.org/10.17586/2220-8054-2024-15-3-352-360