Транспортные свойства зигзагообразных силиценовых нанолент с низким и высоким изгибом, легированных кобальтом GaAs, пассивированных H-двухзондовыми устройствами
https://doi.org/10.17586/2220-8054-2023-14-4-438-446
Аннотация
В этом исследовании мы изучали транспортные свойства двухзондовых устройств на основе силицена с низким сопротивлением (LB) и высоким сопротивлением (HB), такие как ВАХ, проводимость, спектр пропускания и прогнозируемая плотность состояний устройства. Во-первых, мы открыли запрещенную зону в зигзагообразных силиценовых нанолентах LB и HB (ZSiNR) путем водородной пассивации и смоделировали их транспортные свойства. Далее мы легировали структуры LB и HB ZSiNR атомами галлия (Ga) и арсенида (As) с целью определения изменения их транспортных свойств. Результаты показывают, что силиценовая нанолента шириной 4 атома имеет максимальную ширину запрещенной зоны 2,76 Å и 2,72 Å для LB-ZSiNR и HB-ZSiNR соответственно. ZSiNR, легированный 2 атомами, показывает хорошие транспортные характеристики в диапазоне напряжений от 0,5 В до 1,5 В по сравнению с моделями, легированными 4 и 6 атомами. Полученные результаты были подтверждены путем расчета спектра пропускания и прогнозируемой плотности состояний устройства. Считается, что смоделированные устройства найдут ряд футуристических применений в электронной промышленности.
Об авторах
А. Н. НакашИндия
Хуршед А. Шах
Индия
Дж. Шейх
Индия
Б. Кумбхани
Индия
С.М.А. Андраби
Россия
Список литературы
1. Motamedi M. A space structural mechanics model of silicene. Proceedings of the Institution of Mechanical Engineers, Part N: J. of Nanomaterials, Nanoengineering and Nanosystems, 2020, 234 (1–2), P. 3–10.
2. Zhao J., Liu H., Yu Z., Quhe R., Zhou S., Wang Y., Liu C.C., et al. Rise of silicene: A competitive 2D material. Progress in Materials Science, 2016, 83, P. 24–151.
3. Aufray B., Kara A., Vizzini S., Oughaddou H., Leandri C., Ealet B., Lay G.L. Graphene-like silicon nanoribbons on Ag (110): A possible formation ´ of silicene. Applied Physics Letters, 2010, 96 (18), 183102.
4. Padova P.D., Quaresima C., Ottaviani C., Sheverdyaeva P.M., Moras P., Carbone C., Topwal D., et al. Evidence of graphene-like electronic signature in silicene nanoribbons. Applied Physics Letters, 2010, 96 (26), 261905.
5. Lalmi B., Oughaddou H., Enriquez H., Kara A., Vizzini S., Ealet B., Aufray B. Epitaxial growth of a silicene sheet. Applied Physics Letters, 2010, 97 (22), 223109.
6. Fagan S.B., Baierle R.J., Mota R., da Silva A.J.R., Fazzio A. Ab initio calculations for a hypothetical material: Silicon nanotubes. Physical Review B, 2000, 61 (15), 9994.
7. Cahangirov S., Topsakal M., Akturk E., S¸ ahin H., Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. ¨ Physical Review Letters, 2009, 102 (23), 236804.
8. Chen Lan, Liu C.C., Feng B., He X., Cheng P., Ding Z., Meng S., Yao Y., Wu K. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Physical Review Letters, 2012, 109 (5), 056804.
9. Guzman-Verri G.G., Lew Yan Voon L.C. Electronic structure of silicon-based nanostructures. ´ Physical Review B, 2007, 76 (7), 075131.
10. Deepthi Jose, Ayan Datta. Understanding of the buckling distortions in silicene. J. of Physical Chemistry C, 2012, 116 (46), P. 24639–24648.
11. Ding Yi, Jun Ni. Electronic structures of silicon nanoribbons. Applied Physics Letters, 2009, 95 (8), 083115.
12. Ding Yi, Yanli Wang. Density functional theory study of the silicene-like SiX and XSi3 (X= B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J. of Physical Chemistry C, 2013, 117 (35), P. 18266–18278.
13. Ni Zeyuan, Qihang Liu, Kechao Tang, Jiaxin Zheng, Jing Zhou, Rui Qin, Zhengxiang Gao, Dapeng Yu, Jing Lu. Tunable bandgap in silicene and germanene. Nano Letters, 2012, 12 (1), P. 113–118.
14. Sahin H., Cahangirov S., Topsakal M., Bekaroglu E., Akturk E., Senger R.T., Ciraci S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Physical Review B, 2009, 80 (15), 155453.
15. Iordanidou K., Houssa M., van den Broek B., Pourtois G., Afanas’ev V.V., Stesmans A. Impact of point defects on the electronic and transport properties of silicenenanoribbons. J. of Physics: Condensed Matter, 2016, 28 (3), 035302.
16. Kharadi M.A., Malik G.F.A., Khanday F.A., Shah K.A., Mittal S., Kaushik B.K. Review – Silicene: From material to device applications. ECS J. of Solid State Science and Technology, 2020, 9 (11), 115031.
17. Liu C.C., Hua Jiang, Yugui Yao. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Physical Review B, 2011, 84 (19), 195430.
18. Liu C.C., Wanxiang Feng, Yugui Yao. Quantum spin Hall effect in silicene and two-dimensional germanium. Physical Review Letters, 2011, 107 (7), 076802.
19. Motohiko E. Valley-polarized metals and quantum anomalous Hall effect in silicene. Physical Review Letters, 2012, 109 (5), 055502.
20. Das R., Chowdhury S., Majumdar A., Jana D. Optical properties of P and Al doped silicene: a first principles study. RSC Advances, 2015, 5 (1), P. 41–50.
21. Saleh Bahaa E.A., Malvin Carl Teich. Fundamentals of Photonics. John Wiley & Sons. Inc., Hoboken N.J., 1991.
22. Chen Xuanhu, Fangfang Ren, Shulin Gu, Jiandong Ye. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Research, 2019, 7 (4), P. 381–415.
23. Edelman P. Environmental and workplace contamination in the semiconductor industry: implications for future health of the workforce and community. Environmental Health Perspectives, 1990, 86, P. 291–295.
24. Shinde S.S., Shinde P.S., Oh Y.W., Haranath D., Bhosale C.H., Rajpure K.Y. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Applied Surface Science, 2012, 258 (24), P. 9969–9976.
25. Brodsky M.H. Progress in gallium arsenide semiconductors. Scientific American, 1990, 262 (2), P. 68–75.
26. Ding He, Hao Hong, Dali Cheng, Zhao Shi, Kaihui Liu, Xing Sheng. Power-and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode. ACS Photonics, 2019, 6 (1), P. 59–65.
27. Xu Chengyong, Guangfu Luo, Qihang Liu, Jiaxin Zheng, Zhimeng Zhang, Shigeru Nagase, Zhengxiang Gao, Jing Lu. Giant magnetoresistance in silicene nanoribbons. Nanoscale, 2012, 4 (10), P. 3111–3117.
28. Li Feng, Changwen Zhang, Wei-Xiao Ji, Mingwen Zhao. High hydrogen storage capacity in calcium-decorated silicene nanostructures. Physica Status Solidi B, 2015, 252 (9), P. 2072–2078.
29. Guo Gang, Yuliang Mao, Jianxin Zhong, Jianmei Yuan, Hongquan Zhao. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicenenanoribbon: a first principle study. Applied Surface Science, 2017, 406, P. 161–169.
30. Kharadi M.A., Malik G.F.A., Khanday F.A., Shah K.A. Hydrogenated silicene based magnetic junction with improved tunneling magnetoresistance and spin-filtering efficiency. Physics Letters A, 2020, 384 (32), 126826.
31. Kharadi M.A., Malik G.F.A., Khanday F.A., Mittal S. Silicene-based spin filter with high spin-polarization. IEEE Transactions on Electron Devices, 2021, 68 (10), P. 5095–5100.
32. Gani Muzafar, Khurshed Ahmad Shah, Shabir A. Parah. Realization of a sub 10-nm silicene magnetic tunnel junction and its application for magnetic random access memory and digital logic. IEEE Transactions on Nanotechnology, 2021, 20, P. 466–473.
33. Kharadi M.A., Malik G.F.A., Mittal S. Electric field tunable spin polarization in functionalized silicene. Physics Letters A, 2022, 429, 127952.
34. Quantum ATK version P-2019.03, synopsis quantum ATK. URL: https://www.synopsys.com/silicon/quantumatk.html.
35. Saputro Dewi Retno Sari, Purnami Widyaningsih. Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR). AIP Conference Proceedings, 2017, 1868 (1), 040009.
36. Ding Yi, Jun Ni. Electronic structures of silicon nanoribbons. Applied Physics Letters, 2009, 95 (8), 083115.
37. Parvaiz Shunaid M., Shah K.A., Dar G.N., Farooq Ahmad Khanday. Electrical doping in single walled carbon nanotube systems: A new technique. Computational Condensed Matter, 2020, 25, e00507.
38. Drummond N.D., Zolyomi V., Fal’ko V.I. Electrically tunable band gap in silicene. Physical Review B, 2012, 85 (7), 075423.
39. Nigam S., Gupta S.K., Majumder C., Pandey R. Modulation of band gap by an applied electric field in silicene-based hetero-bilayers. Physical Chemistry Chemical Physics, 2015, 17, P. 11324–11328.
40. Jun K., Wu F., Li J. Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons. Applied Physics Letters, 2012, 100, 233122.
41. Kaur H., Kaur J., Kumar R. A Comparative Study on Electronic Transport Behavior of Silicene and B40-Nano Onions. Silicon, 2022, 14 (15), P. 9479–9487.
42. Krishna S.M., Singh S., Kaushik B.K. Edge Modified Stanene Nanoribbons for Potential Nanointerconnects. IEEE Transactions on Nanotechnology, 2022, 22, P. 1–8.
43. Showket S., Shah K.A., Dar G.N. Pristine and Modified Silicene based Volatile Organic Compound Toxic Gas Sensor: A First Principles Study. Physica Scripta, 2023, 98, 085937.
Рецензия
Для цитирования:
Накаш А.Н., Шах Х.А., Шейх Д., Кумбхани Б., Андраби С. Транспортные свойства зигзагообразных силиценовых нанолент с низким и высоким изгибом, легированных кобальтом GaAs, пассивированных H-двухзондовыми устройствами. Наносистемы: физика, химия, математика. 2023;14(4):438-446. https://doi.org/10.17586/2220-8054-2023-14-4-438-446
For citation:
Naqash A.N., Shah K.A., Sheikh J.A., Kumbhani B., Andrabi S. Transport properties of GaAs Co-doped H-passivated low-buckled and high-buckled zigzag silicene nanoribbon two probe devices. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(4):438-446. https://doi.org/10.17586/2220-8054-2023-14-4-438-446