Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Understanding the electronic properties of carbon polyprismanes from the sp3 tight-binding model

https://doi.org/10.17586/2220-8054-2025-16-2-209-215

Abstract

Carbon polyprismanes are 1D nanostructures that should be classified as diamond-like phases because they (polyprismanes) also consist of the 4-coordinated carbon atoms. A carbon polyprismane contains polygonal atomic rings arranged in layers along the common symmetry axis, at uniform distances from each other. According to previous density functional theory based studies, carbon polyprismanes can exhibit metallic conductivity, which is very unusual for diamond-like phases. In this paper, we present the sp3 tightbinding model based calculations of the band structures for carbon polyprismanes of different diameters and compare the obtained results with their analogs for a 2D square carbon lattice, which can be considered as the limiting case of a carbon polyprismane of infinite diameter. Our results confirm that the sp3 tight-binding model describes the electronic properties of carbon polyprismanes well, since we obtain their band structures over a wide range of parameter values for the proposed model. We believe that such electronic transport characteristics are an intrinsic topological feature of polyprismanes and should also occur in non-carbon polyprismanes.

About the Authors

V. A. Kurakin
National Research Nuclear University MEPhI
Russian Federation

Vladimir A. Kurakin

31 Kashirskoe Hwy, Moscow 115409



T. N. Kobernik
Energy Technology Center, Skolkovo Institute of Science and Technology
Russian Federation

Tatyana N. Kobernik

30 (bld 1) Bolshoy Blvd, Moscow 121205



References

1. Peng R., Pan Y., Liu B., Li Z., Pan P., Zhang S., Qin Z., Wheeler A., Tang X., Liu X. Understanding Carbon Nanotube-Based Ionic Diodes: Design and Mechanism. Small, 2021, 17 (31), 2100383.

2. Liang X., Li H., Dou J., Wang Q., He W., Wang C., Li D., Lin J.-M., Zhang Y. Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics. Advanced Materials, 2020, 32 (31), 2000165.

3. Cao Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Research, 2021, 14 (9), 3051.

4. Shi H., Ding L., Zhong D., Han J., Liu L., Xu L., Sun P., Wang H., Zhou J., Fang L., Zhang Z., Peng L.-M. Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 2021, 4 (6), 405.

5. Lin Y., Liang S., Xu L., Liu L., Hu Q., Fan C., Liu Y., Han J., Zhang Z., Peng L.-M. Enhancement-Mode Field-Effect Transistors and High-Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Advanced Functional Materials, 2021, 32 (11), 2104539.

6. Franklin A.D., Hersam M.C., Wong P.H.-S. Carbon nanotube transistors: Making electronics from molecules. Science, 2020, 378 (6621), 726.

7. Lin Y., Cao Y., Ding S., Zhang P., Xu L., Liu C., Hu Q., Jin C., Peng L.-M., Zhang Z. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nature Electronics, 2023, 6, 506.

8. Wan H., Cao Y., Lo L.-W., Zhao J., Sepulveda N., Wang C. Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. ACS Nano, 2020, 14 (8), 10402.

9. Wang Z.-X., Du P.-Y., Li W.-J., Meng J.-H., Zhao L.-H., Jia S.-L., Jia L.-C. Highly rapid-response electrical heaters based on polymer-infiltrated carbon nanotube networks for battery thermal management at subzero temperatures. Composites Science and Technology, 2023, 231, 109796.

10. Li Z., Shen C., Liu Y., Ma C., Li F., Yang B., Huang M., Wang Z., Dong L., Wolfgang S. Carbon Nanotube Filter Functionalized with Iron Oxychloride for Flow-through Electro-Fenton. Applied Catalysis B: Environmental, 2020, 260, 118204.

11. Katin K.P., Shostachenko S.A., Avkhadieva A.I., Maslov M.M. Geometry, Energy, and Some Electronic Properties of Carbon Polyprismanes: Ab Initio and Tight-Binding Study. Advances in Physical Chemistry, 2015, 2015, 506894.

12. Katz T.J., Acton N. Synthesis of prismane. J. of the American Chemical Society, 1973, 95 (8), 2738.

13. Eaton P.E., Cole T.W. The Cubane System. J. of the American Chemical Society, 1964, 86 (5), 962.

14. Eaton P.E., Or Y.S., Branca S.J. Pentaprismane. J. of the American Chemical Society, 1981, 103 (8), 2134.

15. Su S.-K., Chen E., Hung T.Y. T., Li M.-Z., Pitner G., Cheng C.-C., Wang H., Cai J., Wong H.-S.P., Radu I.P. Perspective on Low-dimensional Channel Materials for Extremely Scaled CMOS. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Honolulu, HI, USA, 12 – 17 June 2022, IEEE, 2022, P. 403.

16. Qiu C., Zhang Z., Xiao M., Yang Y., Zhong D., Peng L.-M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355 (6322), 271.

17. Autreto P.A.S., Legoas S.B., Flores M.Z.S., Galvao D.S. Carbon nanotube with square cross-section: An ab initio investigation. The Journal of Chemical Physics, 2010, 133 (12), 124513.

18. Ohno K., Satoh H., Iwamoto T., Tokoyama H., Yamakado H. Exploration of Carbon Allotropes with Four-membered Ring Structures on Quantum Chemical Potential Energy Surfaces. J. of Computational Chemistry, 2018, 40 (1), 14.

19. Lewars E.G. Modeling Marvels: Computational Anticipation of Novel Molecules, Springer Science+Business Media, Luxembourg, 2008, P. 187– 192.

20. Shostachenko S.A., Maslov M.M., Prudkovskiy V.S., Katin K.P. Thermal stability of hexaprismane C12H12 and octaprismane C16H16. Physics of the Solid State, 2015, 57 (5), 1023.

21. Sergeyev D. One-dimensional Schottky nanodiode based on telescoping polyprismanes. Advances in Nano Research, 2021, 10 (4), 339.

22. Baimova J.A., Rysaeva L.K., Rudskoy A.I. Deformation behavior of diamond-like phases: Molecular dynamics simulation. Diamond and Related Materials, 2017, 81, 154.

23. Rysaeva L.K., Lisovenko D.S., Gorodtsov V.A., Baimova J.A. Stability, elastic properties and deformation behavior of graphene-based diamondlike phases. Computational Materials Science, 2019, 172, 109355.

24. Baimova J.A., Galiakhmetova L.K., Mulyukov R. R. Diamond-like structures under hydrostatic loading: Atomistic simulation. Computational Materials Science, 2021, 192, 110301.

25. Lyakhov A.O., Oganov A.R. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO. Physical Review B, 2011, 84 (9), 092103.

26. Kohn E., Denisenko A. Concepts for diamond electronics. Thin Solid Films, 2007, 515 (10), 4333.

27. Belenkov E.A., Greshnyakov V.A. Diamond-like phases prepared from graphene layers. Physics of the Solid State, 2015, 57 (1), 205.

28. Novikov N.V., Maslov M.M., Katin K.P., Prudkovskiy V.S. Effect of DFT-functional on the energy and electronic characteristics of carbon compounds with the unconventional geometry of the framework. Letters on Materials, 2017, 7 (4), 433.

29. Maslov M.M., Grishakov K.S., Gimaldinova M.A., Katin K.P. Carbon vs silicon polyprismanes: a comparative study of metallic sp3 -hybridized allotropes. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 28 (2), 97.

30. Gimaldinova M.A., Katin K.P., Salem M.A., Maslov M.M. Energy and electronic characteristics of silicon polyprismanes: Density functional theory study. Letters on Materials, 2018, 8 (4), 454.

31. Katin K.P., Grishakov K.S., Gimaldinova M.A., Maslov M.M. Silicon rebirth: Ab initio prediction of metallic sp3 -hybridized silicon allotropes. Computational Materials Science, 2020, 174, 109480.

32. Merinov V.B., Khrushkova A.A. Ab initio prediction of metallic nature of sp3 -hybridized germanium structures. Computational and Theoretical Chemistry, 2024, 1231, 114441.

33. Gaur A., Srivastava J. A tight-binding study of the electron transport through single-walled carbon nanotube-graphene hybrid nanostructures. J. of Chemical Physics, 2021, 155 (24), 244104.

34. Xin B., Zou K., Liu D., Li B., Dong H., Cheng Y., Liu H., Zou L.-J., Luo F., Lu F., Wang W.-H. Electronic structures and quantum capacitance of twisted bilayer graphene with defects based on three-band tight-binding model. Physical Chemistry Chemical Physics, 2024, 26 (12), 9687.

35. Mostafaei A., Semiromi E.H. A tight-binding model for the electronic structure of MXene monolayers. Nanoscale, 2022, 14, 11760.

36. Peng Z., Guan Z., Wang H., Srolovitz D.J., Lei D. Modified tight-binding model for strain effects in monolayer transition metal dichalcogenides. Physical Review B, 2024, 109, 245412.

37. Candiotto G. Exploring the electronic potential of effective tight-binding Hamiltonians. Materials Today Quantum, 2024, 1, 100001.

38. Slater J.C., Koster G.F. Simplified LCAO Method for the Periodic Potential Problem. Physical Review, 1954, 94 (6), P. 1498–1524.

39. Charlier J.-C., Lambin Ph., Ebbesen T.W. Electronic properties of carbon nanotubes with polygonized cross sections. Physical Review B, 1996, 54 (12), R8377–R8380.

40. Dag S., Senger R.T., Ciraci S. Theoretical study of crossed and parallel carbon nanotube junctions and three-dimensional grid structures. Physical Review B, 2004, 70 (20), 205407.

41. Wei-Yang Lo, George Y.-S. Wu, Kuei-Ching Wu. Tight-binding calculation with up to the 3rd nearest “neighbor” coupling for small-radius carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2010, 43 (1), P. 482–486.

42. Kulbachinsky V.A. Physics of nanosystems. Physmathlit, Moscow, 2023, P. 513–515.

43. Schattauer C., Todorovic M., Ghosh K., Rinke P., Libisch F. Machine learning sparse tight-binding parameters for defects. NPJ Computational Materials, 2022, 8, 116.

44. Nakhaee M., Ketabi S.A., Peeters F.M. Tight-Binding Studio: A technical software package to find the parameters of tight-binding Hamiltonian. Computer Physics Communications, 2020, 254, 107379.

45. Zhang G., Musgrave C.B. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. J. of Physical Chemistry A, 2007, 111 (8), 1554.

46. Krylova K.A., Baimova Y.A., Dmitriev S.V., Mulyukov R.R. Calculation of the structure of carbon clusters based on fullerene-like C24 and C48 molecules. Physics of the Solid State, 2016, 58 (2), 394.


Review

For citations:


Kurakin V.A., Kobernik T.N. Understanding the electronic properties of carbon polyprismanes from the sp3 tight-binding model. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(2):209-215. https://doi.org/10.17586/2220-8054-2025-16-2-209-215

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)