Solution processed Ag–In–S nanoparticles as light adsorber in ZnO for photovoltaic application
https://doi.org/10.17586/2220-8054-2023-14-4-454-466
Abstract
Nano-sized indium incorporated silver sulphide (Ag–In–S) nanocomposites were synthesized by simple wet chemical method as an electron transport layer in zinc oxide (ZnO) for high efficient photovoltaic (PV) cell. The inclusion of high conductivity indium ions in Ag2S will improve the facile electron transfer and the assembled hetero-structure features the solar light harvesting in PV cell. The powder X-ray diffraction (XRD) studies confirmed the formation of indium incorporated Ag2S (AIS) nanocomposites and ZnO/AIS (ZAIS) compound nanocomposites crystallizing in pure monoclinic phase and mixed wurtzite hexagonal, monoclinic and tertiary phases respectively. The wide particle size distributions in ZAIS clearly revealed the adherence of AIS nanocomposites in ZnO lattice thus, promoting the light adsorption property. In addition, the tuning of the optical bandgap covering the entire solar spectrum (UV, visible, and infra-red regions), multiple-band electron transitions and hence, promoting the fast electron transportation are effectively achieved in ZAIS compound nanocomposites. With this simple positive approach, the PV cell efficiency is pushed forward with the In3+ metal ion incorporation however; enhanced, enriched solar cell efficiency can be later tuned up with the detailed optimization studies
Keywords
About the Authors
K. AbinayaUnited Kingdom
K. Abinaya – Doctoral Researcher
London SE1 0AA, UK
P. Sharvanti
United States
P. Sharvanti – Senior Process Engineer,
Saint Gobain, San Diego, California 92123
N. Rajeswari Yogamalar
India
N. Rajeswari Yogamalar – Department of Physics,
Padur, Kelambakkam, Chennai – 603103
References
1. Ahmet Z.S., Mohammed Ayaz U., Bekir S.Y., Abdullah A.S. Performance enhancement of solar energy systems using nanofluids: An updated review. Renew. Energy, 2020, 145, P. 1126–1148.
2. Selvakumar P., Muthukumarasamy N., Agilan S., Vijayshankar A., Akila Y., Venkatraman M.R., Senthilarasu S., Dhayalan V. A review on the classification of organic / inorganic / carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem., 2020, 13, P. 2526–2557.
3. Zahra S. Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renew. Sust. Energy Rev., 2020, 119, P. 109608–109646.
4. Zinab H.B., Qamar W., Azhar F., Lukas Schmidt M., Thomas M., Rajan J. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. NanoEnergy, 2017, 34, P. 271–305.
5. Ambalika S., Rahul S., Nishat B., Asha Kumari. Review on synthesis, characterization and applications of silver sulphide quantum dots. J. Mat. Sci. Res. Rev., 2021, 7(3), P. 42–58.
6. Anjana V.N., Majo J., Sijo F., Alex J., Ebey P. Koshy, Beena M. Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications. Artif. Cells Nanomed. Biotechnol., 2021, 49, P. 438–449.
7. Auttasit T., Kun-Lun W., Hao-Yu T., Ming-Way L., Gou Jen W. Ag2S quantum dot-sensitized solar cells. Electrochem. Commun., 2010, 12, P. 1158–1160.
8. Nurul Syafiqah M., Suhaila S., Norasikin Ahmad L., Asri Mat Teridi M., Adib Ibrahim M. Effect of silver sulphide (Ag2S) layer towards the performance of copper indium sulphide (CuInS2) quantum dots sensitized solar cell. Int. J. Nanotechnol., 2021, 17, P. 795–806.
9. Hanlin H., Mriganka S., Xuejuan W., Jiaoning T., Chih-Wei C., Gang L. Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. J. Mater. Chem. A, 2020, 8, P. 1578–1603.
10. Yaokang Z., Sze-Wing N., Xi L., Zijian Z. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev., 2020, 120, P. 2049–2122.
11. Mingxia J., Yun L., Chenxi L., Hao B., Liting G., Peng C., Xiliang L. Strongly emitting and long-lived silver indium sulphide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J. Colloid Interface Sci., 2020, 565, P. 35–42.
12. Taro U., Kazutaka W., Dharmendar Kumar S., Shuzo H., Takahisa Y., Tatsuya K., Martin V., Tsukasa T., Susumu K. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater., 2018, 10, P. 713–726.
13. Jilu C.J., Tina S., Sunny M., Shaji S., Augustine S. Investigations on the properties of indium sulphide – Graphene nanocomposites thin films. Thin Solid Films, 2020, 695, P. 137758–137772.
14. Jingjing Z., Hou W., Xingzhong Y., Guangming Z., Wenguang Tu Sibo W. Tailored indium sulphide-based materials for solar-energy conversion and utilization. J. Photoch. Photobio. C: Photochem. Rev., 2019, 38, P. 1–26.
15. Mohammed Hamed S.G., Michael A.A., Yong Z., Genene Tessema M. Silver sulphide nano-particles enhanced photo-current in polymer solar cells. Appl. Phys. A, 2020, 126, P. 207–214.
16. Mohammad Istiaque H. Prospects of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges. Chalcogenide Lett., 2012, 9, P. 231–242.
17. Zhe X., Jihuai W., Yuqian Y., Zhang L., Jianming L. High-efficiency planar hybrid perovskite ssolar cells using indium sulphide as electron transport layer. ACS Appl. Energy Mater., 2018, 1, P. 4050–4056.
18. Asim G., Amlan J. Pal. Copper-diffused AgInS2 ternary nanocrystals in hybrid bulk-heterojunction solar cells: Near-infrared active nanophotovoltaics. Appl. Mater. Interfaces, 2013, 5, P. 4181–4189.
19. Anusit K., Pisist K., Takashi S. Silver-indium-sulphide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells. J. Mater. Sci.:Mater Electron., 2019, 30, P. 4041–4055.
20. Dan H., Peng S., Huihui Z., Huihui Y., Qi X., Zhongxi Y., Qi W. Flower-like In2O3 hierarchical nanostructures: synthesis, characterization, and gas sensing properties. RSC Adv., 2014, 4, P. 50241–50248.
21. Jiayong G., Xihong L., Jingheng W., Shilei X., Teng Z., Minghao Y., Zishou Z., Yanchao M., Shing Chi Ian W., Yong S., Yexiang T. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep., 2013, 3, P. 1–7.
22. Mingxia J., Yun L., Chenxi L., Hao B., Liting G., Peng C., Xiliang L. Strongly emitting and long-lived silver indium sulphide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J. Colloid Interface Sci., 2020, 565, P. 35–42.
23. Yuqiang Y., Jihuai W., Xiaobing W., Qiyao G., Xuping L., Weihai S., Yuelin W., Yunfang H., Zhang L., Miaoliang H., Jianming L., Hongwei C., Zhanhua W. Suppressing vacancy defects and grain boundaries via Oswald ripening for high-performance and stable perovskite solar cells. Adv. Mater., 2020, 32, P. 1904347.
24. Dhanabal R., Chithambararaj A., Velmathi S., Chandra Bose A. Visible light droiven degradation of methylene blue dye using Ag3PO4. J. Environ. Chem. Engg., 2015, 3, P. 1872–1881.
25. Rajeswari Yogamalar N., Sadhanandam K., Chandra Bose A., Jayavel R. Quantum confined CdS inclusion in grapheme oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell. RSC Adv., 2015, 5, P. 16856–16869.
26. Markus D., Thathit S., Arif H., Ahmad T., Abdulloh F., Risa S. Shockley’s equation fit analyses for solar cell parameters from I-V curves. Int. J. Photoenergy, 2018, 2018, P. 1–7.
Review
For citations:
Abinaya K., Sharvanti P., Rajeswari Yogamalar N. Solution processed Ag–In–S nanoparticles as light adsorber in ZnO for photovoltaic application. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(4):454-466. https://doi.org/10.17586/2220-8054-2023-14-4-454-466