Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Preparation, structure and magnetic properties of the nanostructural Ni@C films obtained by magnetron deposition

https://doi.org/10.17586/2220-8054-2024-15-3-340-345

Abstract

   Three series of films were obtained by magnetron sputtering of the composite C-Ni target with different ratios C/Ni (vol. %) = 60/40; 40/60; 30/70. The effect of the substrate temperature on the structure and the size of film-forming nickel nanocrystallites with a carbon shell was studied with using X-ray diffraction analysis. The cluster nature of film deposition on the growth surface was established by using atomic force microscopy. The saturation magnetization of nickel nanoparticles 4πMS was measured by the inductive-frequency method and the substrate temperature dependence was studied. It has been shown that the films with a high carbon content exhibit magnetism only when deposited on hot substrates. The films with the minimum carbon concentration exhibit ferromagnetic behavior even when deposited on a relatively cold substrate.

About the Authors

R. V. Shalayev
http://nanojournal.ifmo.ru
Galkin Donetsk Institute for Physics and Engineerin
Russian Federation

Rostyslav V. Shalayev

283048; R. Luxembourg str. 72; Donetsk



V. N. Varyukhin
http://nanojournal.ifmo.ru
Galkin Donetsk Institute for Physics and Engineerin
Russian Federation

Victor N. Varyukhin

283048; R. Luxembourg str. 72; Donetsk



A. I. Linnik
http://nanojournal.ifmo.ru
Galkin Donetsk Institute for Physics and Engineerin
Russian Federation

283048; R. Luxembourg str. 72; Donetsk



V. V. Syrotkin
http://nanojournal.ifmo.ru
Galkin Donetsk Institute for Physics and Engineerin
Russian Federation

Vladimir V. Syrotkin

283048; R. Luxembourg str. 72; Donetsk



S. A. Kostyrya
http://nanojournal.ifmo.ru
Galkin Donetsk Institute for Physics and Engineerin
Russian Federation

283048; R. Luxembourg str. 72; Donetsk



References

1. Sunny V., Kumar D., Yoshida Ya., Makarewicz M., Tabis W., Anantharaman M. Synthesis and properties of highly stable nickel/carbon core/shell nanostructures. Carbon, 2010, 48(5), P. 1643–1651.

2. El Mel A., Gautron E., Angleraud B., Granier A., Tessier P. Synthesis of nickel-filled carbon nanotubes at 350◦C. Carbon, 2011, 49(13), P. 4595–4598.

3. Kumar M., Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 10(6), P. 3739–3758.

4. He Z., Lee Ch.S., Maurice Jean-L., Pribat D., Haghi-Ashtiani P., Cojocaru C.S. Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition. Carbon, 2011, 49(14), P. 4710–4718.

5. Hayashi Y., Tokunaga T., Toh S., Moon W.J., Kaneko K. Synthesis and characterization of metal-filled carbon nanotubes by microwave plasma chemical vapor deposition. Diamond and Related Materials, 2005, 14(3-7), P. 790–793.

6. Shalaev R.V., Ulyanov A.N., Prudnikov A.M., Shin G.M., Yoo S.I., Varyukhin V.N. Noncatalytic synthesis of carbonnitride nanocolumns by DC magnetron sputtering. Phys.Status Solidi A., 2010, 207(10), P. 2300–2302.

7. Shalaev R.V., Prudnikov A.M., Ulyanov A.N., Shin G.M. et al. Effect of in situ ultraviolet irradiation on the formation of nanostructural carbon nitride films. Phys. Status Solidi A., 2012, 209(7), P. 1287–1290.

8. Novikov S.I., Konev A.S., Uymin M.A., Ermakov A.E., Privalova D.V., Maykov V.V Magnetic properties of Ni@C nanocomposites. International journal of applied and fundamental research, 2017, 12, P. 247–251.

9. Uymin M.A., Novikov S.I., Konev A.S., Byzov I.V., Ermakov A.E. et al. Evolution of structure and magnetic properties composite nanoparticles Ni@C during annealing. Physics of metals and metal science, 2019, 120(3), P. 245–250.

10. Shalayev R.V., Varyukhin V.N., Prudnikov A.M., Linnik A.I., Syrotkin V.V. Role of carbon in the formation of the structure and magnetic properties of Ni@CNx nanoclusters under reactive magnetron deposition. Nanosystems: Phys. Chem. Math., 2017, 8(6), P. 804–808.

11. Kashtanov P.V., Smirnov B.M., Hippler R. Magnetron plasma and nanotechnology. Phys. Usp., 2007, 50, P. 455–488.

12. Dovgii V.T., Linnik A.I., Pashchenko V.P., Derkachenko V.N., Prokopenko V.K., Turchenko V.A., Davydeiko N.V. Anomalous magnetic hysteresis in La<sub>0.6</sub>Sr<sub>0.2</sub>Mn<sub>1.2</sub>O<sub>3</sub>−delta manganites with a perovskite structure. Technical Physics Letters, 2003, 29(7), P. 610–612.

13. Liechtenstein I.Ya., Schemchenko E.I., Varyukhin V.N. Mechanism of formation of the internal structure in multi-walled carbon nanotubes produced by a DC-magnetron. PHPT, 2021, 31(4), P. 42–47.

14. Linnik A.I., Prudnikov A.M., Shalaev R.V., Linnik T.A., Varyukhin V.N., Kostyrya S.A., Burkhovetskii V.V. Magnetic properties and thermal modification of nanostructured films of nickel nitrides. Technical Physics Letters, 2013, 39(2), P. 143–146.


Review

For citations:


Shalayev R.V., Varyukhin V.N., Linnik A.I., Syrotkin V.V., Kostyrya S.A. Preparation, structure and magnetic properties of the nanostructural Ni@C films obtained by magnetron deposition. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):340-345. https://doi.org/10.17586/2220-8054-2024-15-3-340-345

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)